U-tiling: UQC5832
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc2382 |
*2244 |
(5,6,2) |
{8,4,8,4,8} |
{3.3.3.3.3.3.3.3}{3.4.4.3}{3.4.4... |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc11870
|
|
P4/nmm |
129 |
tetragonal |
{8,4,8,4,8} |
20 |
(5,6) |
G
|
False
|
|
sqc11872
|
|
I41/a |
88 |
tetragonal |
{8,4,8,4,8} |
20 |
(5,7) |
D
|
False
|
|
sqc11871
|
|
I41/amd |
141 |
tetragonal |
{8,4,8,4,8} |
20 |
(5,6) |
Topological data
Vertex degrees | {8,4,8,4,8} |
2D vertex symbol | {3.3.3.3.3.3.3.3}{3.4.4.3}{3.4.4.3.3.4.4.3}{4.4.4.4}{4.4.4.4.4.4.4.4} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<4.1:224:2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140 142 144 146 148 150 152 154 156 158 160 162 164 166 168 170 172 174 176 178 180 182 184 186 188 190 192 194 196 198 200 202 204 206 208 210 212 214 216 218 220 222 224,3 6 5 9 14 11 13 17 20 19 23 28 25 27 31 34 33 37 42 39 41 45 48 47 51 56 53 55 59 62 61 65 70 67 69 73 76 75 79 84 81 83 87 90 89 93 98 95 97 101 104 103 107 112 109 111 115 118 117 121 126 123 125 129 132 131 135 140 137 139 143 146 145 149 154 151 153 157 160 159 163 168 165 167 171 174 173 177 182 179 181 185 188 187 191 196 193 195 199 202 201 205 210 207 209 213 216 215 219 224 221 223,29 30 87 88 7 8 23 24 95 96 41 42 43 44 101 102 21 22 109 110 55 56 115 116 35 36 65 66 123 124 143 144 49 50 79 80 151 152 183 184 157 158 63 64 165 166 195 196 211 212 129 130 77 78 137 138 223 224 127 128 91 92 107 108 139 140 155 156 105 106 167 168 169 170 119 120 163 164 181 182 133 134 149 150 197 198 147 148 209 210 161 162 213 214 175 176 205 206 221 222 199 200 189 190 219 220 207 208 203 204 217 218:3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4,8 4 8 4 8 8 4 8 8 4 8 4 4 4 4 4 4 4 8 4> {(2, 190): 'tau1^-1', (2, 191): 'tau1^-1', (2, 52): 'tau3*t2^-1', (2, 53): 'tau3*t2^-1', (2, 176): 'tau1', (2, 177): 'tau1', (2, 50): 't2', (2, 51): 't2', (2, 164): 'tau2*t3', (2, 165): 'tau2*t3', (2, 36): 't3', (2, 37): 't3', (2, 38): 'tau2^-1*t3^-1', (2, 39): 'tau2^-1*t3^-1', (2, 162): 't3^-1', (2, 163): 't3^-1', (2, 24): 't1^-1', (2, 25): 't1^-1', (2, 148): 't2', (2, 149): 't2', (2, 136): 'tau3^-1*t2', (2, 137): 'tau3^-1*t2', (2, 10): 't1^-1', (2, 11): 't1^-1', (2, 178): 't3*tau2*t1^-1*tau3^-1*t2', (2, 179): 't3*tau2*t1^-1*tau3^-1*t2', (2, 206): 't2*tau3^-1*t1^-1*tau2*t3', (2, 207): 't2*tau3^-1*t1^-1*tau2*t3'}