U-tiling: UQC5841
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc2387 |
*2626 |
(5,6,2) |
{12,4,8,12,4} |
{3.3.3.3.3.3.3.3.3.3.3.3}{3.4.4.... |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc9967
|
|
R-3m |
166 |
rhombohedral |
{12,4,8,12,4} |
14 |
(5,6) |
G
|
False
|
|
sqc9969
|
|
R-3 |
148 |
rhombohedral |
{12,4,8,12,4} |
14 |
(5,7) |
D
|
False
|
|
sqc9966
|
|
R-3m |
166 |
rhombohedral |
{12,4,8,12,4} |
14 |
(5,6) |
Topological data
Vertex degrees | {12,4,8,12,4} |
2D vertex symbol | {3.3.3.3.3.3.3.3.3.3.3.3}{3.4.4.3}{3.4.4.3.3.4.4.3}{4.4.4.4.4.4.4.4.4.4.4.4}{4.4.4.4} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<4.2:168:2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140 142 144 146 148 150 152 154 156 158 160 162 164 166 168,3 6 5 9 14 11 13 17 20 19 23 28 25 27 31 34 33 37 42 39 41 45 48 47 51 56 53 55 59 62 61 65 70 67 69 73 76 75 79 84 81 83 87 90 89 93 98 95 97 101 104 103 107 112 109 111 115 118 117 121 126 123 125 129 132 131 135 140 137 139 143 146 145 149 154 151 153 157 160 159 163 168 165 167,127 128 143 144 7 8 23 24 39 40 139 140 113 114 157 158 21 22 53 54 125 126 155 156 101 102 35 36 65 66 167 168 141 142 87 88 49 50 79 80 153 154 71 72 129 130 63 64 95 96 83 84 115 116 77 78 109 110 99 100 91 92 121 122 111 112 105 106 135 136 119 120 151 152 133 134 165 166 147 148 163 164 161 162:3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4,12 4 8 12 4 4 4 4 8 4 8 4 4 4> {(2, 56): 'tau1', (2, 57): 'tau1', (2, 58): 't3', (2, 59): 't3', (2, 54): 'tau3', (2, 55): 'tau3', (2, 44): 't2', (2, 45): 't2', (2, 40): 'tau2^-1', (2, 41): 'tau2^-1', (2, 42): 'tau3', (2, 43): 'tau3', (2, 28): 'tau2^-1', (2, 29): 'tau2^-1', (2, 30): 't3', (2, 31): 't3', (2, 27): 'tau3', (2, 16): 't1^-1', (2, 17): 't1^-1', (2, 14): 'tau3', (2, 15): 'tau3', (2, 138): 'tau2', (2, 139): 'tau2', (2, 2): 't1^-1', (2, 3): 't1^-1', (2, 124): 'tau3^-1', (2, 126): 'tau2', (2, 127): 'tau2', (2, 114): 't2^-1', (2, 115): 't2^-1', (2, 110): 'tau1^-1', (2, 111): 'tau1^-1', (2, 98): 'tau1^-1', (2, 99): 'tau1^-1', (2, 82): 'tau1^-1', (2, 83): 'tau1^-1'}