U-tiling: UQC5853
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc328 |
2*26 |
(3,3,1) |
{6,4,3} |
{6.6.6.6.6.6}{6.6.6.6}{6.6.6} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc2842
|
|
R-3m |
166 |
rhombohedral |
{3,4,6} |
10 |
(3,3) |
G
|
False
|
|
sqc8546
|
|
R-3c |
167 |
rhombohedral |
{6,4,3} |
20 |
(3,4) |
D
|
False
|
|
sqc2599
|
|
R-3m |
166 |
rhombohedral |
{3,4,6} |
10 |
(3,3) |
Topological data
Vertex degrees | {6,4,3,3,4,6} |
2D vertex symbol | {6.6.6.6.6.6}{6.6.6.6}{6.6.6}{6.6.6}{6.6.6.6}{6.6.6.6.6.6} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<67.1:144:2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140 142 144,109 3 5 114 19 9 11 24 97 15 17 102 21 23 133 27 29 138 55 33 35 60 121 39 41 126 67 45 47 72 61 51 53 66 57 59 63 65 69 71 85 75 77 90 103 81 83 108 87 89 115 93 95 120 99 101 105 107 111 113 117 119 123 125 139 129 131 144 135 137 141 143,121 122 15 16 7 8 117 118 35 36 133 134 19 20 105 106 47 48 85 86 51 52 31 32 141 142 73 74 63 64 43 44 129 130 109 110 55 56 69 70 83 84 97 98 67 68 95 96 99 100 79 80 93 94 111 112 91 92 103 104 131 132 115 116 143 144 135 136 127 128 139 140:6 6 6 6 6 6 6 6 6 6 6 6,6 4 3 3 4 6 3 4 4 3 3 4 3 3 3 4 3 3 3 3> {(2, 60): 't2', (2, 61): 't2', (2, 56): 'tau1', (2, 57): 'tau1', (1, 120): 'tau3^-1', (1, 113): 'tau2', (2, 48): 't3', (2, 49): 't3', (2, 44): 'tau3', (2, 45): 'tau3', (1, 108): 'tau2', (1, 96): 'tau3^-1', (2, 36): 't2', (2, 37): 't2', (2, 32): 'tau2^-1', (2, 33): 'tau2^-1', (2, 121): 't1', (2, 24): 't3', (2, 25): 't3', (2, 20): 'tau3', (2, 21): 'tau3', (2, 12): 't1^-1', (1, 72): 'tau1', (1, 77): 'tau1', (2, 9): 'tau2^-1', (1, 65): 'tau1^-1', (2, 8): 'tau2^-1', (2, 0): 't1^-1', (1, 60): 'tau1^-1', (1, 101): 'tau3^-1', (1, 41): 'tau3', (2, 133): 't1', (2, 92): 'tau1^-1', (1, 24): 'tau2^-1', (1, 29): 'tau2^-1', (2, 81): 'tau1'}