U-tiling: UQC5866
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc553 |
2*222 |
(3,4,1) |
{4,4,3} |
{7.7.7.7}{7.7.7.7}{7.7.7} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
True
|
|
sqc1120
|
|
Immm |
71 |
orthorhombic |
{3,4,3} |
8 |
(3,4) |
G
|
False
|
|
sqc6610
|
|
Ibca |
73 |
orthorhombic |
{4,4,3} |
16 |
(3,5) |
D
|
False
|
|
sqc1219
|
|
Pnnn |
48 |
orthorhombic |
{3,4,4} |
8 |
(3,4) |
Topological data
Vertex degrees | {4,4,3,3,4,4} |
2D vertex symbol | {7.7.7.7}{7.7.7.7}{7.7.7}{7.7.7}{7.7.7.7}{7.7.7.7} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<130.1:112:15 3 5 7 9 11 13 28 17 19 21 23 25 27 43 31 33 35 37 39 41 56 45 47 49 51 53 55 71 59 61 63 65 67 69 84 73 75 77 79 81 83 99 87 89 91 93 95 97 112 101 103 105 107 109 111,2 4 6 21 22 10 12 14 16 18 20 24 26 28 30 32 34 49 50 38 40 42 44 46 48 52 54 56 58 60 62 77 78 66 68 70 72 74 76 80 82 84 86 88 90 105 106 94 96 98 100 102 104 108 110 112,29 58 59 18 19 8 9 24 25 68 69 42 43 72 73 22 23 82 83 56 86 87 46 47 36 37 52 53 96 97 100 101 50 51 110 111 85 74 75 64 65 80 81 98 99 78 79 112 102 103 92 93 108 109 106 107:7 7 7 7 7 7 7 7,4 4 3 3 4 4 4 4 4 3 3 4 3 3 3 3> {(0, 56): 't2^-1*tau3', (2, 53): 't3*tau1^-1*t2^-1*tau3*t1', (2, 54): 't3*tau1^-1*t2^-1*tau3*t1', (2, 55): 'tau2^-1*t1', (0, 55): 'tau2^-1*t3^-1', (1, 105): 'tau2^-1*t3^-1', (2, 45): 'tau2^-1*t3^-1', (2, 46): 'tau2^-1*t3^-1', (2, 40): 't3*tau1^-1', (2, 41): 't3', (2, 39): 't3*tau1^-1', (0, 27): 't1^-1', (1, 90): 't2^-1*tau3*t1', (2, 25): 'tau3', (2, 26): 'tau3', (2, 16): 't1^-1', (2, 17): 't1^-1', (2, 18): 't1^-1', (2, 12): 't2', (2, 15): 't1^-1', (1, 76): 'tau3^-1*t2', (2, 11): 't2', (2, 80): 'tau3^-1*t2', (1, 49): 'tau2^-1*t3^-1', (2, 108): 't1^-1*tau3^-1*t2', (0, 111): 'tau2^-1*t3^-1', (2, 107): 't1^-1*tau3^-1*t2', (0, 98): 't1^-1*tau3^-1*t2', (2, 101): 'tau2^-1*t3^-1', (2, 102): 'tau2^-1*t3^-1', (2, 97): 'tau1*t2', (2, 98): 't1^-1', (1, 21): 't1^-1', (2, 83): 't2^-1*tau1^-1*t3*tau2', (2, 79): 'tau3^-1*t2'}