U-tiling: UQC5896
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc2354 |
*2244 |
(6,6,2) |
{4,8,4,3,4,4} |
{6.6.6.6}{6.6.6.6.6.6.6.6}{6.4.4... |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
G
|
False
|
|
sqc11747
|
|
I-42d |
122 |
tetragonal |
{4,8,4,3,4,4} |
28 |
(6,7) |
Topological data
Vertex degrees | {4,8,4,3,4,4} |
2D vertex symbol | {6.6.6.6}{6.6.6.6.6.6.6.6}{6.4.4.6}{6.4.4}{4.4.4.4}{4.4.4.4} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<65.1:224:2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140 142 144 146 148 150 152 154 156 158 160 162 164 166 168 170 172 174 176 178 180 182 184 186 188 190 192 194 196 198 200 202 204 206 208 210 212 214 216 218 220 222 224,85 3 5 90 9 14 11 13 99 17 19 104 23 28 25 27 43 31 33 48 37 42 39 41 45 47 51 56 53 55 71 59 61 76 65 70 67 69 73 75 79 84 81 83 87 89 93 98 95 97 101 103 107 112 109 111 197 115 117 202 121 126 123 125 211 129 131 216 135 140 137 139 155 143 145 160 149 154 151 153 157 159 163 168 165 167 183 171 173 188 177 182 179 181 185 187 191 196 193 195 199 201 205 210 207 209 213 215 219 224 221 223,29 30 17 18 7 8 23 24 123 124 97 98 43 44 21 22 137 138 111 112 59 60 35 36 65 66 151 152 55 56 73 74 49 50 79 80 165 166 85 86 63 64 179 180 83 84 99 100 77 78 193 194 101 102 91 92 107 108 207 208 105 106 221 222 141 142 129 130 119 120 135 136 209 210 155 156 133 134 223 224 171 172 147 148 177 178 167 168 185 186 161 162 191 192 197 198 175 176 195 196 211 212 189 190 213 214 203 204 219 220 217 218:6 4 6 4 6 4 4 6 4 4 4 4 6 4 6 4 6 4 4 6 4 4 4 4,4 8 4 3 4 4 3 4 4 3 4 4 4 4 3 4 4 4 4 8 4 3 3 4 3 4 3 4> {(2, 190): 't3*tau2*t1^-1', (2, 191): 't3*tau2*t1^-1', (2, 56): 't3', (2, 57): 't3', (1, 126): 't1^-1*tau2*t3', (2, 182): 't3*tau2*t1^-1*tau3^-1*t2*tau1', (2, 183): 't3*tau2*t1^-1*tau3^-1*t2*tau1', (2, 50): 't1*tau2^-1*t3^-1', (2, 51): 't1*tau2^-1*t3^-1', (2, 44): 't1*tau2^-1*t3^-1', (2, 45): 't1*tau2^-1*t3^-1', (2, 168): 'tau1', (2, 169): 'tau1', (2, 42): 't1', (2, 43): 't1', (2, 184): 't3*tau2*t1^-1', (1, 98): 't3^-1*tau2^-1*t1', (1, 103): 't3^-1*tau2^-1*t1', (2, 157): 't1*tau2^-1*t3^-1', (2, 26): 't1^-1*tau2*t3', (2, 27): 't1^-1*tau2*t3', (1, 215): 't3^-1*tau2^-1*t1', (2, 140): 't2^-1', (2, 141): 't2^-1', (2, 138): 't1^-1*tau2*t3', (2, 139): 't1^-1*tau2*t3', (2, 126): 'tau3', (2, 127): 'tau3', (2, 99): 't3^-1*tau2^-1*t3^-1', (2, 70): 't3*tau2*t3'}