U-tiling: UQC5905
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
 |
hqc2360 |
*2244 |
(6,6,2) |
{4,4,4,4,3,8} |
{8.8.8.8}{8.8.8.8}{8.8.8.8}{8.3.... |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc11878
|
|
P42/mmc |
131 |
tetragonal |
{4,4,4,4,3,8} |
28 |
(6,6) |
G
|
False
|
|
sqc11879
|
|
I-42d |
122 |
tetragonal |
{4,4,4,4,3,8} |
28 |
(6,7) |
D
|
False
|
|
sqc6452
|
|
P4/mmm |
123 |
tetragonal |
{4,4,3,8,4,4} |
14 |
(6,6) |
Topological data
Vertex degrees | {4,4,4,4,3,8} |
2D vertex symbol | {8.8.8.8}{8.8.8.8}{8.8.8.8}{8.3.3.8}{8.3.3}{3.3.3.3.3.3.3.3} |
Dual tiling |  |
D-symbol
Genus-3 version with t-tau cuts labelled
<66.1:224:2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140 142 144 146 148 150 152 154 156 158 160 162 164 166 168 170 172 174 176 178 180 182 184 186 188 190 192 194 196 198 200 202 204 206 208 210 212 214 216 218 220 222 224,29 3 5 7 36 11 14 13 43 17 19 21 50 25 28 27 31 33 35 39 42 41 45 47 49 53 56 55 85 59 61 63 92 67 70 69 99 73 75 77 106 81 84 83 87 89 91 95 98 97 101 103 105 109 112 111 141 115 117 119 148 123 126 125 155 129 131 133 162 137 140 139 143 145 147 151 154 153 157 159 161 165 168 167 197 171 173 175 204 179 182 181 211 185 187 189 218 193 196 195 199 201 203 207 210 209 213 215 217 221 224 223,15 16 115 116 89 90 9 10 95 96 41 42 129 130 103 104 23 24 109 110 55 56 57 58 143 144 47 48 37 38 53 54 71 72 157 158 51 52 171 172 75 76 65 66 81 82 97 98 185 186 79 80 111 112 99 100 199 200 93 94 213 214 107 108 127 128 201 202 121 122 207 208 153 154 215 216 135 136 221 222 167 168 169 170 159 160 149 150 165 166 183 184 163 164 187 188 177 178 193 194 209 210 191 192 223 224 211 212 205 206 219 220:8 3 8 3 3 3 8 3 8 3 3 3 8 3 8 3 3 3 8 3 8 3 3 3,4 4 4 4 3 8 4 4 3 4 4 4 4 4 4 3 3 4 4 4 3 8 4 3 4 4 3 3> {(1, 126): 'tau3', (2, 180): 'tau1', (1, 112): 't2', (2, 54): 't1', (2, 55): 't1', (1, 119): 't2', (1, 105): 't3^-1*tau2^-1*t3^-1', (2, 42): 't1*tau2^-1*t3^-1', (2, 43): 't1*tau2^-1*t3^-1', (2, 166): 'tau3^-1', (1, 98): 't3^-1*tau2^-1*t3^-1', (1, 217): 'tau1^-1*t2^-1*tau3*t1*tau2^-1*t3^-1', (1, 91): 't3^-1', (2, 167): 'tau3^-1', (2, 24): 't1^-1*tau2*t3', (2, 153): 't2^-1', (1, 210): 'tau1^-1*t2^-1*tau3*t1*tau2^-1*t3^-1', (1, 84): 't3^-1', (2, 18): 't1^-1*tau2*t3', (2, 19): 't1^-1*tau2*t3', (2, 136): 't1^-1*tau2*t3', (2, 137): 't1^-1*tau2*t3', (2, 181): 'tau1', (1, 196): 'tau1^-1', (2, 130): 't1^-1*tau2*t3', (2, 124): 't2', (2, 182): 't3*tau2*t1^-1', (2, 183): 't3*tau2*t1^-1', (2, 109): 't3^-1*tau2^-1*t1', (2, 110): 't3^-1*tau2^-1*t3^-1', (2, 111): 't3^-1*tau2^-1*t3^-1', (1, 175): 'tau1', (1, 161): 'tau3^-1', (2, 96): 't3^-1', (2, 97): 't3^-1', (2, 222): 'tau1^-1*t2^-1*tau3*t1*tau2^-1*t3^-1', (2, 223): 'tau1^-1*t2^-1*tau3*t1*tau2^-1*t3^-1', (2, 215): 't3^-1*tau2^-1*t1', (1, 21): 't1^-1', (1, 42): 't1'}