U-tiling: UQC597
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc393 |
*2224 |
(2,3,3) |
{4,6} |
{4.6.3.6}{6.3.3.6.3.3} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc6780
|
|
I4/mmm |
139 |
tetragonal |
{6,4} |
12 |
(2,3) |
G
|
False
|
|
sqc11915
|
|
I41/acd |
142 |
tetragonal |
{6,4} |
24 |
(2,4) |
D
|
False
|
|
sqc1404
|
|
I4/mmm |
139 |
tetragonal |
{4,6} |
6 |
(2,3) |
Topological data
Vertex degrees | {4,6} |
2D vertex symbol | {4.6.3.6}{6.3.3.6.3.3} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<45.1:224:29 4 5 83 84 36 11 12 97 98 43 18 19 104 105 57 25 26 125 126 32 33 111 112 39 40 132 133 46 47 146 147 162 53 54 139 140 60 61 174 175 190 67 68 118 119 204 74 75 181 182 113 81 82 218 88 89 153 154 134 95 96 148 102 103 155 109 110 116 117 176 123 124 183 130 131 137 138 197 144 145 151 152 158 159 195 196 165 166 188 189 211 172 173 179 180 186 187 193 194 200 201 223 224 207 208 216 217 214 215 221 222,2 10 32 6 35 9 39 13 42 16 24 46 20 49 23 60 27 63 30 52 34 37 66 41 44 73 48 51 165 55 168 58 87 62 65 193 69 196 72 207 76 210 79 94 116 83 119 86 221 90 224 93 137 97 140 100 122 151 104 154 107 136 158 111 161 114 129 118 121 179 125 182 128 186 132 189 135 139 142 178 200 146 203 149 171 153 156 185 160 163 192 167 170 214 174 217 177 181 184 188 191 195 198 213 202 205 220 209 212 216 219 223,15 3 5 7 22 10 12 14 17 19 21 24 26 28 43 31 33 35 57 38 40 42 45 47 49 71 52 54 56 59 61 63 85 66 68 70 73 75 77 99 80 82 84 87 89 91 120 94 96 98 101 103 105 141 108 110 112 148 115 117 119 122 124 126 169 129 131 133 176 136 138 140 143 145 147 150 152 154 197 157 159 161 204 164 166 168 171 173 175 178 180 182 211 185 187 189 218 192 194 196 199 201 203 206 208 210 213 215 217 220 222 224:3 6 4 3 4 3 6 4 3 4 6 6 6 3 6 3 3 3 3 3 3 3 3 3 3 6 3 6,6 4 4 4 4 6 6 4 4 4 6 4 4 4 4 6 4 6 4 4 4 6 6 4> {(2, 161): 't3^-1', (1, 213): 't2', (1, 216): 't2', (0, 124): 't1', (1, 90): 't2', (0, 181): 'tau2', (0, 62): 'tau3', (0, 84): 't2', (0, 20): 't1^-1', (1, 114): 't2^-1', (2, 140): 't3^-1', (2, 49): 't3^-1', (2, 63): 't2^-1', (0, 216): 't2*tau3^-1*t1^-1*tau2', (0, 47): 'tau2^-1', (0, 152): 'tau3^-1', (1, 212): 'tau1^-1*t3', (1, 184): 'tau1^-1', (0, 48): 'tau2^-1', (0, 61): 'tau3', (2, 168): 't2^-1', (0, 19): 't1^-1', (2, 154): 't3', (0, 201): 'tau2*t1^-1*tau3^-1*t2', (0, 168): 't2^-1', (1, 219): 'tau1*t3^-1', (0, 180): 'tau2', (0, 215): 't2*tau3^-1*t1^-1*tau2', (0, 153): 'tau3^-1', (1, 51): 't3^-1', (1, 220): 't2^-1', (0, 223): 't2^-1*tau3*t1*tau2^-1', (1, 107): 't3', (0, 27): 't1^-1', (1, 65): 't2^-1', (1, 191): 'tau1', }