U-tiling: UQC5976
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc2410 |
*222222 |
(6,7,2) |
{4,4,8,3,4,4} |
{7.7.7.7}{7.7.7.7}{7.4.4.7.7.4.4... |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
G
|
False
|
|
sqc7161
|
|
I212121 |
24 |
orthorhombic |
{4,4,8,3,4,4} |
14 |
(6,8) |
Topological data
Vertex degrees | {4,4,8,3,4,4} |
2D vertex symbol | {7.7.7.7}{7.7.7.7}{7.4.4.7.7.4.4.7}{7.4.4}{4.4.4.4}{4.4.4.4} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<37.1:120:16 3 5 7 9 11 13 15 18 20 22 24 26 28 30 46 33 35 37 39 41 43 45 48 50 52 54 56 58 60 76 63 65 67 69 71 73 75 78 80 82 84 86 88 90 106 93 95 97 99 101 103 105 108 110 112 114 116 118 120,2 4 6 22 10 15 12 14 17 19 21 25 30 27 29 32 34 36 52 40 45 42 44 47 49 51 55 60 57 59 62 64 66 82 70 75 72 74 77 79 81 85 90 87 89 92 94 96 112 100 105 102 104 107 109 111 115 120 117 119,31 62 63 19 20 8 9 40 41 72 73 29 30 46 77 78 23 24 55 56 87 88 92 93 49 50 38 39 102 103 59 60 107 108 53 54 117 118 91 79 80 68 69 100 101 89 90 106 83 84 115 116 109 110 98 99 119 120 113 114:7 4 4 7 4 4 7 4 4 7 4 4,4 4 8 3 4 4 4 4 4 3 4 8 3 3> {(2, 56): 't3*tau1^-1*t2^-1*tau3*t1', (2, 57): 't3*tau1^-1*t2^-1*tau3*t1', (0, 60): 't2^-1*tau3', (2, 54): 'tau2^-1*t1', (2, 55): 'tau2^-1*t1', (2, 48): 'tau2^-1*t3^-1', (2, 49): 'tau2^-1*t3^-1', (2, 40): 't3', (2, 41): 't3*tau1^-1', (2, 42): 't3*tau1^-1', (1, 111): 't1^-1*tau3^-1*t2', (2, 39): 't3', (2, 26): 'tau3', (2, 27): 'tau3', (1, 81): 'tau3^-1*t2', (2, 16): 't1^-1', (2, 17): 't1^-1', (2, 19): 't1^-1', (2, 12): 't2', (2, 11): 't2', (2, 3): 't1', (2, 119): 't1^-1*tau3^-1*t2', (2, 114): 'tau2^-1*t3^-1*tau1*t2', (2, 115): 'tau2^-1*t3^-1*tau1*t2', (2, 108): 'tau2^-1*t3^-1', (2, 109): 'tau2^-1*t3^-1', (0, 105): 't1^-1*tau3^-1*t2', (2, 105): 't1^-1', (2, 100): 'tau1*t2', (2, 103): 't2^-1*tau3*t1', (2, 99): 'tau1*t2', (2, 88): 'tau3^-1*t2', (2, 89): 'tau3^-1*t2'}