U-tiling: UQC5984
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc2412 |
*22222 |
(6,7,2) |
{4,4,4,4,3,4} |
{9.9.9.9}{9.9.9.9}{9.9.9.9}{9.3.... |
s-nets
No items to display.
Topological data
Vertex degrees | {4,4,4,4,3,4} |
2D vertex symbol | {9.9.9.9}{9.9.9.9}{9.9.9.9}{9.3.3.9}{9.3.3}{3.3.3.3} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<34.2:240:61 3 5 7 9 11 13 15 76 18 20 22 24 26 28 30 91 33 35 37 39 41 43 45 121 48 50 52 54 56 58 60 63 65 67 69 71 73 75 78 80 82 84 86 88 90 93 95 97 99 101 103 105 181 108 110 112 114 116 118 120 123 125 127 129 131 133 135 196 138 140 142 144 146 148 150 211 153 155 157 159 161 163 165 226 168 170 172 174 176 178 180 183 185 187 189 191 193 195 198 200 202 204 206 208 210 213 215 217 219 221 223 225 228 230 232 234 236 238 240,2 4 6 8 69 12 15 14 17 19 21 23 84 27 30 29 32 34 36 38 99 42 45 44 47 49 51 53 129 57 60 59 62 64 66 68 72 75 74 77 79 81 83 87 90 89 92 94 96 98 102 105 104 107 109 111 113 189 117 120 119 122 124 126 128 132 135 134 137 139 141 143 204 147 150 149 152 154 156 158 219 162 165 164 167 169 171 173 234 177 180 179 182 184 186 188 192 195 194 197 199 201 203 207 210 209 212 214 216 218 222 225 224 227 229 231 233 237 240 239,136 32 33 19 20 36 37 10 11 42 43 74 75 106 47 48 51 52 25 26 57 58 89 90 166 49 50 40 41 104 105 151 55 56 134 135 196 92 93 109 110 96 97 70 71 102 103 181 122 123 139 140 126 127 85 86 132 133 226 154 155 100 101 152 153 156 157 115 116 162 163 194 195 211 169 170 130 131 167 168 171 172 145 146 177 178 209 210 160 161 224 225 175 176 239 240 212 213 199 200 216 217 190 191 222 223 227 228 231 232 205 206 237 238 229 230 220 221 235 236:9 3 9 3 9 3 9 3 3 3 3 9 3 3 9 3 9 3 9 3 3 3 3 3,4 4 4 4 3 4 4 4 3 4 3 3 4 4 4 4 4 4 4 4 4 3 4 4 3 4 3 3 4 4 4 4> {(2, 61): 't3*tau2', (2, 62): 't3*tau2', (2, 191): 't3^-1*tau2^-1', (2, 184): 'tau1^-1', (2, 185): 't3^-1*tau2^-1', (2, 186): 't3^-1*tau2^-1', (2, 181): 't2*tau3^-1*t1^-1', (2, 182): 't2*tau3^-1*t1^-1', (2, 183): 'tau1^-1', (2, 176): 'tau3^-1*t2', (2, 177): 'tau3^-1*t2', (2, 178): 't1', (2, 179): 't1', (1, 233): 't1^-1', (2, 56): 't1', (2, 63): 't3', (2, 168): 'tau3^-1', (2, 169): 'tau3^-1', (2, 170): 'tau3^-1*t2', (0, 45): 't1', (2, 165): 't1', (2, 32): 't1^-1', (2, 161): 'tau2*t3', (2, 162): 'tau2*t3', (2, 57): 't1', (2, 156): 'tau2*t3', (2, 31): 't1^-1', (2, 153): 'tau2', (2, 154): 'tau2', (2, 155): 'tau2*t3', (2, 141): 't2^-1*tau3', (2, 138): 't2^-1', (2, 139): 't2^-1', (2, 133): 't1^-1', (2, 134): 't1^-1', (0, 165): 't1', (2, 121): 'tau3*t2^-1', (2, 122): 'tau3*t2^-1', (2, 48): 't1', (1, 53): 't1', (2, 49): 't1', (2, 236): 't1^-1*tau3^-1*t2', (2, 237): 't1^-1*tau3^-1*t2', (2, 50): 't1', (2, 228): 't1^-1*tau3^-1*t2*tau1*t3^-1*tau2^-1', (2, 229): 't1^-1*tau3^-1*t2*tau1*t3^-1*tau2^-1', (2, 230): 't1^-1*tau3^-1*t2', (2, 231): 't1^-1*tau3^-1*t2', (2, 51): 't1', (2, 226): 'tau2^-1*t3^-1', (2, 227): 'tau2^-1*t3^-1', (2, 222): 'tau2*t3', (2, 109): 't3^-1', (2, 210): 't1'}