U-tiling: UQC5985
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc2412 |
*22222 |
(6,7,2) |
{4,4,4,4,3,4} |
{9.9.9.9}{9.9.9.9}{9.9.9.9}{9.3.... |
s-nets
No items to display.
Topological data
Vertex degrees | {4,4,4,4,3,4} |
2D vertex symbol | {9.9.9.9}{9.9.9.9}{9.9.9.9}{9.3.3.9}{9.3.3}{3.3.3.3} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<34.3:240:136 3 5 7 9 11 13 15 106 18 20 22 24 26 28 30 166 33 35 37 39 41 43 45 151 48 50 52 54 56 58 60 196 63 65 67 69 71 73 75 181 78 80 82 84 86 88 90 226 93 95 97 99 101 103 105 108 110 112 114 116 118 120 211 123 125 127 129 131 133 135 138 140 142 144 146 148 150 153 155 157 159 161 163 165 168 170 172 174 176 178 180 183 185 187 189 191 193 195 198 200 202 204 206 208 210 213 215 217 219 221 223 225 228 230 232 234 236 238 240,2 4 6 8 144 12 15 14 17 19 21 23 114 27 30 29 32 34 36 38 174 42 45 44 47 49 51 53 159 57 60 59 62 64 66 68 204 72 75 74 77 79 81 83 189 87 90 89 92 94 96 98 234 102 105 104 107 109 111 113 117 120 119 122 124 126 128 219 132 135 134 137 139 141 143 147 150 149 152 154 156 158 162 165 164 167 169 171 173 177 180 179 182 184 186 188 192 195 194 197 199 201 203 207 210 209 212 214 216 218 222 225 224 227 229 231 233 237 240 239,31 17 18 34 35 66 67 10 11 72 73 149 150 46 49 50 81 82 25 26 87 88 119 120 47 48 96 97 40 41 102 103 179 180 126 127 55 56 132 133 164 165 91 107 108 94 95 70 71 209 210 121 137 138 124 125 85 86 194 195 152 153 100 101 239 240 151 154 155 186 187 115 116 192 193 167 168 130 131 224 225 166 169 170 201 202 145 146 207 208 216 217 160 161 222 223 231 232 175 176 237 238 211 197 198 214 215 190 191 226 229 230 205 206 227 228 220 221 235 236:9 3 9 3 9 3 9 3 9 3 9 3 9 3 3 9 3 3 3 3 3 3 3 3,4 4 4 4 3 4 4 4 3 4 4 3 4 4 3 4 4 4 3 4 4 3 3 4 4 3 4 4 4 4 4 4> {(2, 60): 't3*tau2', (2, 61): 't3', (2, 62): 't3', (2, 184): 't3^-1*tau2^-1', (2, 152): 'tau2', (2, 180): 't2*tau3^-1*t1^-1', (2, 181): 'tau1^-1', (2, 182): 'tau1^-1', (2, 183): 't3^-1*tau2^-1', (2, 176): 't1', (2, 177): 't1', (2, 178): 't1', (2, 179): 't1', (2, 46): 't1', (2, 47): 't1', (2, 168): 'tau3^-1*t2', (2, 169): 'tau3^-1*t2', (2, 170): 't1', (2, 171): 't1', (2, 166): 'tau3^-1', (2, 167): 'tau3^-1', (2, 30): 't1^-1', (0, 30): 't1^-1', (2, 153): 'tau2*t3', (2, 154): 'tau2*t3', (2, 151): 'tau2', (2, 136): 't2^-1', (2, 137): 't2^-1', (2, 132): 't1^-1', (2, 133): 't1^-1', (2, 134): 't1^-1', (2, 227): 't1^-1*tau3^-1*t2*tau1*t3^-1*tau2^-1', (2, 131): 't1^-1', (0, 120): 't1^-1', (2, 120): 'tau3*t2^-1', (2, 48): 't1', (2, 49): 't1', (2, 50): 't1', (2, 228): 't1^-1*tau3^-1*t2', (2, 229): 't1^-1*tau3^-1*t2', (2, 51): 't1', (2, 225): 'tau2^-1*t3^-1', (2, 226): 't1^-1*tau3^-1*t2*tau1*t3^-1*tau2^-1', (1, 38): 't1^-1', (1, 128): 't1^-1'}