U-tiling: UQC5986
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc2412 |
*22222 |
(6,7,2) |
{4,4,4,4,3,4} |
{9.9.9.9}{9.9.9.9}{9.9.9.9}{9.3.... |
s-nets
No items to display.
Topological data
Vertex degrees | {4,4,4,4,3,4} |
2D vertex symbol | {9.9.9.9}{9.9.9.9}{9.9.9.9}{9.3.3.9}{9.3.3}{3.3.3.3} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<34.2:240:136 3 5 7 9 11 13 15 166 18 20 22 24 26 28 30 196 33 35 37 39 41 43 45 226 48 50 52 54 56 58 60 151 63 65 67 69 71 73 75 121 78 80 82 84 86 88 90 211 93 95 97 99 101 103 105 181 108 110 112 114 116 118 120 123 125 127 129 131 133 135 138 140 142 144 146 148 150 153 155 157 159 161 163 165 168 170 172 174 176 178 180 183 185 187 189 191 193 195 198 200 202 204 206 208 210 213 215 217 219 221 223 225 228 230 232 234 236 238 240,2 4 6 8 144 12 15 14 17 19 21 23 174 27 30 29 32 34 36 38 204 42 45 44 47 49 51 53 234 57 60 59 62 64 66 68 159 72 75 74 77 79 81 83 129 87 90 89 92 94 96 98 219 102 105 104 107 109 111 113 189 117 120 119 122 124 126 128 132 135 134 137 139 141 143 147 150 149 152 154 156 158 162 165 164 167 169 171 173 177 180 179 182 184 186 188 192 195 194 197 199 201 203 207 210 209 212 214 216 218 222 225 224 227 229 231 233 237 240 239,121 62 63 19 20 36 37 10 11 42 43 149 150 151 77 78 51 52 25 26 57 58 179 180 181 92 93 49 50 40 41 209 210 211 107 108 55 56 239 240 166 79 80 96 97 70 71 102 103 164 165 136 111 112 85 86 117 118 134 135 226 109 110 100 101 224 225 196 115 116 194 195 167 168 154 155 186 187 130 131 192 193 152 153 169 170 201 202 145 146 207 208 216 217 160 161 222 223 231 232 175 176 237 238 227 228 214 215 190 191 212 213 229 230 205 206 220 221 235 236:9 3 9 3 9 3 9 3 9 3 9 3 9 3 9 3 3 3 3 3 3 3 3 3,4 4 4 4 3 4 4 4 3 4 4 4 3 4 3 4 4 3 4 4 3 4 3 3 4 4 4 4 4 4 4 4> {(2, 191): 't3^-1', (2, 184): 't3^-1*tau1*t2', (2, 185): 't3^-1', (0, 60): 't2^-1', (2, 180): 'tau2', (2, 181): 'tau2*t1^-1*tau3^-1', (2, 182): 'tau2*t1^-1*tau3^-1', (2, 183): 't3^-1*tau1*t2', (2, 176): 't2^-1', (2, 177): 't2^-1', (2, 178): 't2^-1', (2, 179): 't2^-1', (2, 46): 't1^-1', (2, 47): 't1^-1', (2, 168): 'tau1', (2, 169): 'tau1', (2, 170): 't2^-1', (2, 171): 't2^-1', (2, 164): 't2', (2, 32): 't1^-1', (2, 161): 't2', (2, 162): 't2', (2, 163): 't2', (2, 156): 't2', (2, 31): 't1^-1', (2, 186): 't3^-1', (2, 154): 'tau1^-1', (2, 155): 't2', (2, 148): 't3^-1', (2, 149): 't3^-1', (1, 83): 't3^-1', (2, 146): 't3^-1', (2, 147): 't3^-1', (2, 140): 't3^-1', (2, 141): 't3^-1', (0, 15): 't2', (2, 132): 't3', (2, 133): 't3', (0, 0): 't3', (1, 68): 't2^-1', (0, 120): 't3', (2, 123): 'tau1', (2, 228): 't2*tau1*t3^-1', (2, 229): 't2*tau1*t3^-1', (2, 225): 'tau3', (2, 89): 't3^-1', (2, 212): 'tau3^-1*t1^-1*tau2', (1, 23): 't2', (2, 210): 'tau3^-1', (2, 211): 'tau3^-1*t1^-1*tau2', (1, 8): 't3', (2, 195): 'tau2^-1'}