U-tiling: UQC5988
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc2412 |
*22222 |
(6,7,2) |
{4,4,4,4,3,4} |
{9.9.9.9}{9.9.9.9}{9.9.9.9}{9.3.... |
s-nets
No items to display.
Topological data
Vertex degrees | {4,4,4,4,3,4} |
2D vertex symbol | {9.9.9.9}{9.9.9.9}{9.9.9.9}{9.3.3.9}{9.3.3}{3.3.3.3} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<34.4:240:61 3 5 7 9 11 13 15 76 18 20 22 24 26 28 30 91 33 35 37 39 41 43 45 106 48 50 52 54 56 58 60 63 65 67 69 71 73 75 78 80 82 84 86 88 90 93 95 97 99 101 103 105 108 110 112 114 116 118 120 166 123 125 127 129 131 133 135 151 138 140 142 144 146 148 150 153 155 157 159 161 163 165 168 170 172 174 176 178 180 226 183 185 187 189 191 193 195 211 198 200 202 204 206 208 210 213 215 217 219 221 223 225 228 230 232 234 236 238 240,2 4 6 8 69 12 15 14 17 19 21 23 84 27 30 29 32 34 36 38 99 42 45 44 47 49 51 53 114 57 60 59 62 64 66 68 72 75 74 77 79 81 83 87 90 89 92 94 96 98 102 105 104 107 109 111 113 117 120 119 122 124 126 128 174 132 135 134 137 139 141 143 159 147 150 149 152 154 156 158 162 165 164 167 169 171 173 177 180 179 182 184 186 188 234 192 195 194 197 199 201 203 219 207 210 209 212 214 216 218 222 225 224 227 229 231 233 237 240 239,16 32 33 139 140 126 127 10 11 132 133 74 75 47 48 169 170 156 157 25 26 162 163 89 90 46 199 200 186 187 40 41 192 193 104 105 229 230 216 217 55 56 222 223 119 120 76 92 93 154 155 171 172 70 71 177 178 107 108 124 125 141 142 85 86 147 148 106 214 215 231 232 100 101 237 238 184 185 201 202 115 116 207 208 151 182 183 130 131 179 180 166 197 198 145 146 164 165 212 213 160 161 227 228 175 176 211 190 191 239 240 226 205 206 224 225 220 221 235 236:9 3 9 3 9 3 9 3 3 3 3 3 9 3 9 3 3 3 9 3 9 3 3 3,4 4 4 4 3 4 4 4 4 3 4 4 4 3 4 4 4 3 4 4 4 4 4 4 4 4 4 3 4 3 3 3> {(2, 191): 'tau2', (2, 185): 'tau2', (2, 186): 'tau2', (2, 59): 't1^-1', (2, 180): 't3^-1*tau1*t2', (2, 181): 't3^-1', (2, 182): 't3^-1', (2, 43): 't1^-1', (2, 44): 't1^-1', (2, 168): 't2^-1', (2, 169): 't2^-1', (0, 45): 't1^-1', (2, 165): 'tau1', (2, 166): 't2^-1', (1, 98): 't1', (0, 225): 'tau3*t1*tau2^-1', (2, 167): 't2^-1', (0, 30): 't1^-1', (2, 153): 't2', (2, 154): 't2', (2, 150): 'tau1^-1', (2, 151): 't2', (1, 113): 't1', (2, 136): 't3^-1', (2, 137): 't3^-1', (2, 138): 't3^-1', (2, 139): 't3^-1', (2, 124): 't3', (1, 188): 'tau2*t1^-1*tau3^-1', (2, 123): 't3', (2, 58): 't1^-1', (2, 236): 'tau3', (2, 237): 'tau3', (2, 238): 'tau3*t1*tau2^-1', (1, 218): 'tau3^-1*t1^-1*tau2', (2, 230): 'tau3', (2, 231): 'tau3', (2, 224): 'tau3^-1*t1^-1*tau2', (2, 225): 't2*tau1*t3^-1', (2, 221): 'tau3^-1', (2, 222): 'tau3^-1', (2, 223): 'tau3^-1*t1^-1*tau2', (2, 216): 'tau3^-1', (2, 212): 't2^-1', (2, 215): 'tau3^-1', (0, 210): 'tau3^-1*t1^-1*tau2', (2, 206): 'tau2^-1', (2, 207): 'tau2^-1', (2, 200): 'tau2^-1', (2, 201): 'tau2^-1', (2, 192): 'tau2', (2, 194): 'tau2*t1^-1*tau3^-1'}