U-tiling: UQC5989
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc2412 |
*22222 |
(6,7,2) |
{4,4,4,4,3,4} |
{9.9.9.9}{9.9.9.9}{9.9.9.9}{9.3.... |
s-nets
No items to display.
Topological data
Vertex degrees | {4,4,4,4,3,4} |
2D vertex symbol | {9.9.9.9}{9.9.9.9}{9.9.9.9}{9.3.3.9}{9.3.3}{3.3.3.3} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<34.1:240:31 3 5 7 9 11 13 15 46 18 20 22 24 26 28 30 33 35 37 39 41 43 45 48 50 52 54 56 58 60 91 63 65 67 69 71 73 75 106 78 80 82 84 86 88 90 93 95 97 99 101 103 105 108 110 112 114 116 118 120 181 123 125 127 129 131 133 135 196 138 140 142 144 146 148 150 211 153 155 157 159 161 163 165 226 168 170 172 174 176 178 180 183 185 187 189 191 193 195 198 200 202 204 206 208 210 213 215 217 219 221 223 225 228 230 232 234 236 238 240,2 4 6 8 39 12 15 14 17 19 21 23 54 27 30 29 32 34 36 38 42 45 44 47 49 51 53 57 60 59 62 64 66 68 99 72 75 74 77 79 81 83 114 87 90 89 92 94 96 98 102 105 104 107 109 111 113 117 120 119 122 124 126 128 189 132 135 134 137 139 141 143 204 147 150 149 152 154 156 158 219 162 165 164 167 169 171 173 234 177 180 179 182 184 186 188 192 195 194 197 199 201 203 207 210 209 212 214 216 218 222 225 224 227 229 231 233 237 240 239,136 122 123 64 65 21 22 10 11 27 28 44 45 166 152 153 79 80 25 26 59 60 196 182 183 94 95 51 52 40 41 57 58 226 212 213 109 110 55 56 151 167 168 81 82 70 71 87 88 104 105 121 137 138 85 86 119 120 211 227 228 111 112 100 101 117 118 181 197 198 115 116 169 170 156 157 130 131 162 163 194 195 154 155 171 172 145 146 177 178 209 210 160 161 224 225 175 176 239 240 229 230 216 217 190 191 222 223 214 215 231 232 205 206 237 238 220 221 235 236:9 3 9 3 3 3 9 3 9 3 3 3 9 3 9 3 9 3 9 3 3 3 3 3,4 4 4 4 3 4 4 4 3 4 4 4 4 4 4 4 3 4 3 4 4 4 3 4 4 3 4 3 3 4 4 4> {(2, 191): 't3^-1*tau1*t2', (2, 184): 'tau2*t1^-1*tau3^-1', (2, 185): 't3^-1*tau1*t2', (2, 186): 't3^-1*tau1*t2', (2, 181): 'tau2', (2, 182): 'tau2', (2, 183): 'tau2*t1^-1*tau3^-1', (2, 176): 'tau1', (2, 177): 'tau1', (2, 178): 't2^-1', (2, 179): 't2^-1', (1, 233): 't2', (2, 170): 'tau1', (2, 171): 'tau1', (2, 164): 't2', (2, 165): 't2^-1', (0, 165): 't2^-1', (2, 161): 'tau1^-1', (2, 162): 'tau1^-1', (2, 163): 't2', (2, 156): 'tau1^-1', (2, 155): 'tau1^-1', (2, 148): 't3^-1', (2, 149): 't3^-1', (2, 150): 't2', (0, 150): 't2', (2, 33): 't1^-1', (1, 203): 't3', (2, 34): 't1^-1', (2, 133): 't3', (2, 134): 't3', (2, 135): 't3^-1', (0, 135): 't3^-1', (0, 120): 't3', (2, 120): 't3', (1, 188): 't3^-1', (2, 48): 't1^-1', (2, 49): 't1^-1', (2, 236): 't2*tau1*t3^-1', (2, 237): 't2*tau1*t3^-1', (2, 230): 't2*tau1*t3^-1', (2, 231): 't2*tau1*t3^-1', (2, 226): 'tau3', (2, 227): 'tau3', (2, 222): 't2^-1*tau1^-1*t3', (1, 158): 't2', (2, 212): 'tau3^-1', (2, 213): 'tau3^-1*t1^-1*tau2', (2, 214): 'tau3^-1*t1^-1*tau2', (2, 211): 'tau3^-1', (2, 196): 'tau2^-1', (2, 197): 'tau2^-1'}