U-tiling: UQC5990
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
 |
hqc2412 |
*22222 |
(6,7,2) |
{4,4,4,4,3,4} |
{9.9.9.9}{9.9.9.9}{9.9.9.9}{9.3.... |
s-nets
No items to display.
Topological data
Vertex degrees | {4,4,4,4,3,4} |
2D vertex symbol | {9.9.9.9}{9.9.9.9}{9.9.9.9}{9.3.3.9}{9.3.3}{3.3.3.3} |
Dual tiling |  |
D-symbol
Genus-3 version with t-tau cuts labelled
<34.5:240:16 3 5 7 9 11 13 15 18 20 22 24 26 28 30 46 33 35 37 39 41 43 45 48 50 52 54 56 58 60 76 63 65 67 69 71 73 75 78 80 82 84 86 88 90 106 93 95 97 99 101 103 105 108 110 112 114 116 118 120 151 123 125 127 129 131 133 135 166 138 140 142 144 146 148 150 153 155 157 159 161 163 165 168 170 172 174 176 178 180 211 183 185 187 189 191 193 195 226 198 200 202 204 206 208 210 213 215 217 219 221 223 225 228 230 232 234 236 238 240,2 4 6 8 24 12 15 14 17 19 21 23 27 30 29 32 34 36 38 54 42 45 44 47 49 51 53 57 60 59 62 64 66 68 84 72 75 74 77 79 81 83 87 90 89 92 94 96 98 114 102 105 104 107 109 111 113 117 120 119 122 124 126 128 159 132 135 134 137 139 141 143 174 147 150 149 152 154 156 158 162 165 164 167 169 171 173 177 180 179 182 184 186 188 219 192 195 194 197 199 201 203 234 207 210 209 212 214 216 218 222 225 224 227 229 231 233 237 240 239,31 137 138 124 125 66 67 10 11 72 73 29 30 46 167 168 154 155 81 82 25 26 87 88 197 198 184 185 96 97 40 41 102 103 59 60 227 228 214 215 111 112 55 56 117 118 91 152 153 169 170 70 71 89 90 106 122 123 139 140 85 86 212 213 229 230 100 101 119 120 182 183 199 200 115 116 181 171 172 130 131 177 178 164 165 196 156 157 145 146 162 163 179 180 211 160 161 226 175 176 231 232 190 191 237 238 224 225 216 217 205 206 222 223 239 240 220 221 235 236:9 3 3 9 3 3 9 3 3 9 3 3 9 3 9 3 3 3 9 3 9 3 3 3,4 4 4 4 3 4 4 4 4 4 4 4 4 3 4 4 4 4 4 3 4 3 4 3 4 4 3 4 3 4 4 3> {(2, 191): 'tau2*t1^-1*tau3^-1', (2, 184): 'tau2', (2, 185): 'tau2*t1^-1*tau3^-1', (2, 186): 'tau2*t1^-1*tau3^-1', (2, 180): 't3^-1', (2, 183): 'tau2', (2, 178): 'tau1', (2, 179): 'tau1', (1, 233): 't2*tau1*t3^-1', (2, 36): 't1^-1', (2, 56): 't1^-1', (2, 41): 't1^-1', (2, 42): 't1^-1', (2, 164): 'tau1^-1', (2, 165): 't2^-1', (2, 167): 't2^-1', (2, 163): 'tau1^-1', (0, 225): 't2*tau1*t3^-1', (2, 152): 't2', (2, 150): 't2', (2, 151): 't2', (2, 16): 't2', (2, 57): 't1^-1', (2, 121): 't3', (2, 136): 't3^-1', (2, 137): 't3^-1', (2, 95): 't1', (2, 135): 't3^-1', (0, 135): 'tau1^-1', (0, 120): 'tau1', (1, 188): 't3^-1*tau1*t2', (2, 122): 't3', (2, 237): 'tau3*t1*tau2^-1', (2, 238): 't2*tau1*t3^-1', (2, 239): 't2*tau1*t3^-1', (1, 173): 'tau1', (2, 50): 't1^-1', (2, 228): 'tau3', (2, 229): 'tau3', (2, 51): 't1^-1', (2, 224): 't2^-1*tau1^-1*t3', (2, 221): 'tau3^-1*t1^-1*tau2', (2, 222): 'tau3^-1*t1^-1*tau2', (2, 223): 't2^-1*tau1^-1*t3', (2, 216): 'tau3^-1*t1^-1*tau2', (1, 158): 'tau1^-1', (0, 210): 't2^-1*tau1^-1*t3', (2, 213): 'tau3^-1', (2, 214): 'tau3^-1', (2, 215): 'tau3^-1*t1^-1*tau2', (2, 198): 'tau2^-1', (2, 199): 'tau2^-1'}