U-tiling: UQC5991
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
 |
hqc2412 |
*22222 |
(6,7,2) |
{4,4,4,4,3,4} |
{9.9.9.9}{9.9.9.9}{9.9.9.9}{9.3.... |
s-nets
No items to display.
Topological data
Vertex degrees | {4,4,4,4,3,4} |
2D vertex symbol | {9.9.9.9}{9.9.9.9}{9.9.9.9}{9.3.3.9}{9.3.3}{3.3.3.3} |
Dual tiling |  |
D-symbol
Genus-3 version with t-tau cuts labelled
<34.3:240:121 3 5 7 9 11 13 15 151 18 20 22 24 26 28 30 181 33 35 37 39 41 43 45 211 48 50 52 54 56 58 60 166 63 65 67 69 71 73 75 136 78 80 82 84 86 88 90 226 93 95 97 99 101 103 105 196 108 110 112 114 116 118 120 123 125 127 129 131 133 135 138 140 142 144 146 148 150 153 155 157 159 161 163 165 168 170 172 174 176 178 180 183 185 187 189 191 193 195 198 200 202 204 206 208 210 213 215 217 219 221 223 225 228 230 232 234 236 238 240,2 4 6 8 129 12 15 14 17 19 21 23 159 27 30 29 32 34 36 38 189 42 45 44 47 49 51 53 219 57 60 59 62 64 66 68 174 72 75 74 77 79 81 83 144 87 90 89 92 94 96 98 234 102 105 104 107 109 111 113 204 117 120 119 122 124 126 128 132 135 134 137 139 141 143 147 150 149 152 154 156 158 162 165 164 167 169 171 173 177 180 179 182 184 186 188 192 195 194 197 199 201 203 207 210 209 212 214 216 218 222 225 224 227 229 231 233 237 240 239,61 17 18 34 35 141 142 10 11 147 148 134 135 76 49 50 171 172 25 26 177 178 164 165 91 47 48 201 202 40 41 207 208 194 195 106 231 232 55 56 237 238 224 225 77 78 94 95 156 157 70 71 162 163 179 180 109 110 126 127 85 86 132 133 149 150 107 108 216 217 100 101 222 223 239 240 186 187 115 116 192 193 209 210 166 152 153 184 185 130 131 151 167 168 199 200 145 146 214 215 160 161 229 230 175 176 226 212 213 190 191 211 227 228 205 206 220 221 235 236:9 3 9 3 9 3 9 3 9 3 9 3 9 3 9 3 3 3 3 3 3 3 3 3,4 4 4 4 3 4 4 4 3 4 4 4 3 4 4 3 4 4 4 4 3 4 4 3 4 3 4 3 4 4 4 4> {(2, 184): 't3^-1', (1, 113): 'tau2', (2, 181): 't3^-1*tau1*t2', (2, 182): 't3^-1*tau1*t2', (2, 183): 't3^-1', (2, 176): 't2^-1', (2, 177): 't2^-1', (2, 45): 't1^-1', (2, 168): 't2^-1', (2, 169): 't2^-1', (2, 170): 't2^-1', (0, 45): 'tau3', (2, 166): 'tau1', (1, 98): 'tau3^-1', (2, 161): 't2', (2, 162): 't2', (2, 156): 't2', (2, 30): 't1^-1', (0, 30): 'tau2^-1', (2, 153): 't2', (2, 154): 't2', (2, 155): 't2', (2, 151): 'tau1^-1', (2, 146): 't3^-1', (2, 147): 't3^-1', (2, 140): 't3^-1', (2, 180): 'tau2*t1^-1*tau3^-1', (2, 137): 'tau1^-1', (2, 138): 't3^-1', (2, 139): 't3^-1', (2, 132): 't3', (2, 6): 't3', (1, 38): 'tau2^-1', (2, 131): 't3', (2, 125): 't3', (2, 126): 't3', (2, 122): 'tau1', (2, 171): 't2^-1', (1, 53): 'tau3', (2, 238): 'tau3', (2, 239): 'tau3', (2, 224): 'tau3^-1', (2, 226): 't2*tau1*t3^-1', (2, 227): 't2*tau1*t3^-1', (0, 90): 'tau3^-1', (2, 223): 'tau3^-1', (2, 208): 'tau2^-1', (2, 209): 'tau2^-1', (2, 210): 'tau3^-1*t1^-1*tau2', (0, 195): 'tau2^-1', (2, 193): 'tau2', (2, 194): 'tau2'}