U-tiling: UQC6062
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc2444 |
*222222 |
(7,8,2) |
{4,4,3,4,4,4,4} |
{5.5.5.5}{5.6.6.5}{5.6.6}{6.6.6.... |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc8382
|
|
Cmma |
67 |
orthorhombic |
{4,4,3,4,4,4,4} |
18 |
(7,8) |
G
|
False
|
|
sqc8379
|
|
C2/c |
15 |
monoclinic |
{4,4,3,4,4,4,4} |
18 |
(7,9) |
D
|
False
|
|
sqc8381
|
|
Imma |
74 |
orthorhombic |
{4,4,3,4,4,4,4} |
18 |
(7,8) |
Topological data
Vertex degrees | {4,4,3,4,4,4,4} |
2D vertex symbol | {5.5.5.5}{5.6.6.5}{5.6.6}{6.6.6.6}{6.6.6.6}{6.6.6.6}{6.6.6.6} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<50.2:136:35 3 5 7 9 11 13 15 17 52 20 22 24 26 28 30 32 34 37 39 41 43 45 47 49 51 54 56 58 60 62 64 66 68 120 71 73 75 77 79 81 83 85 103 88 90 92 94 96 98 100 102 105 107 109 111 113 115 117 119 122 124 126 128 130 132 134 136,2 4 39 8 17 10 12 14 16 19 21 56 25 34 27 29 31 33 36 38 42 51 44 46 48 50 53 55 59 68 61 63 65 67 70 72 124 76 85 78 80 82 84 87 89 107 93 102 95 97 99 101 104 106 110 119 112 114 116 118 121 123 127 136 129 131 133 135,69 87 88 6 7 93 94 78 79 46 47 31 32 50 51 103 121 122 23 24 127 128 112 113 63 64 67 68 120 104 105 40 41 110 111 129 130 65 66 86 70 71 57 58 76 77 95 96 74 75 131 132 116 117 135 136 91 92 114 115 133 134 118 119 108 109 125 126:5 6 5 6 6 6 5 6 5 6 6 6,4 4 3 4 4 4 4 4 4 3 4 4 4 4 3 4 4 3> {(1, 123): 't2^-1*tau3*t1*tau2^-1*t3^-1', (2, 58): 't3^-1', (2, 59): 't3^-1', (2, 52): 't3^-1', (2, 53): 't3^-1', (2, 49): 't1', (2, 50): 't1', (2, 51): 'tau2*t3', (0, 34): 't1', (1, 106): 't2*tau3^-1*t1^-1*tau2*t3', (2, 41): 't2^-1', (2, 42): 't2^-1', (2, 36): 't2^-1', (2, 32): 't1^-1', (2, 33): 't1^-1', (2, 34): 'tau3^-1*t2', (2, 35): 't2^-1', (2, 24): 't2', (2, 25): 't2', (0, 17): 't1^-1', (2, 17): 'tau3*t2^-1', (2, 18): 't2', (2, 19): 't2', (2, 8): 't3', (2, 132): 'tau1', (2, 133): 'tau1', (2, 7): 't3', (2, 0): 'tau2^-1*t3^-1', (2, 1): 't3', (2, 2): 't3', (2, 116): 'tau1^-1', (2, 117): 't2*tau3^-1*t1^-1*tau2*t3', (2, 118): 't2*tau3^-1*t1^-1*tau2*t3', (0, 119): 't2^-1*tau3*t1*tau2^-1*t3^-1', (1, 55): 't1', (2, 115): 'tau1^-1', (0, 102): 't2*tau3^-1*t1^-1*tau2*t3', (1, 38): 't1', (2, 135): 't2^-1*tau3*t1*tau2^-1*t3^-1', (2, 83): 't3*tau2*t1^-1*tau3^-1*t2'}