U-tiling: UQC6095
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc8 |
*245 |
(1,1,1) |
{4} |
{5.5.5.5} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc9680
|
|
P42/nnm |
134 |
tetragonal |
{4,4,4,4} |
20 |
(4,5) |
G
|
False
|
|
sqc9851
|
|
Ibca |
73 |
orthorhombic |
{4,4,4,4} |
20 |
(4,6) |
D
|
False
|
|
sqc9863
|
|
I41/amd |
141 |
tetragonal |
{4,4,4,4} |
20 |
(4,5) |
Topological data
Vertex degrees | {4,4,4,4,4,4,4,4} |
2D vertex symbol | {5.5.5.5}{5.5.5.5}{5.5.5.5}{5.5.5.5}{5.5.5.5}{5.5.5.5}{5.5.5.5}{5.5.5.5} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<7.2:160:2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140 142 144 146 148 150 152 154 156 158 160,3 10 5 7 9 13 20 15 17 19 23 30 25 27 29 33 40 35 37 39 43 50 45 47 49 53 60 55 57 59 63 70 65 67 69 73 80 75 77 79 83 90 85 87 89 93 100 95 97 99 103 110 105 107 109 113 120 115 117 119 123 130 125 127 129 133 140 135 137 139 143 150 145 147 149 153 160 155 157 159,41 42 83 84 105 106 87 88 11 12 93 94 55 56 37 38 59 60 61 62 123 124 145 146 127 128 31 32 133 134 75 76 79 80 143 144 125 126 147 148 51 52 153 154 77 78 103 104 85 86 107 108 71 72 113 114 141 142 91 92 155 156 137 138 159 160 121 122 111 112 135 136 157 158 139 140 131 132 151 152:5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5,4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4> {(2, 60): 't1', (2, 61): 't1', (2, 62): 'tau2*t3', (2, 63): 'tau2*t3', (2, 58): 't1', (2, 59): 't1', (2, 44): 't2^-1', (2, 45): 't2^-1', (2, 40): 't1', (2, 41): 't1', (2, 42): 'tau3^-1*t2', (2, 43): 'tau3^-1*t2', (2, 38): 't1^-1', (2, 39): 't1^-1', (2, 156): 'tau1', (2, 157): 'tau1', (2, 158): 't2^-1*tau3*t1*tau2^-1*t3^-1', (2, 159): 't2^-1*tau3*t1*tau2^-1*t3^-1', (2, 24): 't2', (2, 25): 't2', (2, 22): 'tau3*t2^-1', (2, 23): 'tau3*t2^-1', (2, 140): 't2^-1*tau3*t1*tau2^-1*t3^-1', (2, 141): 't2^-1*tau3*t1*tau2^-1*t3^-1', (2, 136): 'tau1^-1', (2, 137): 'tau1^-1', (2, 138): 't2*tau3^-1*t1^-1*tau2*t3', (2, 139): 't2*tau3^-1*t1^-1*tau2*t3', (2, 4): 't3', (2, 5): 't3', (2, 2): 'tau2^-1*t3^-1', (2, 3): 'tau2^-1*t3^-1', (2, 120): 't2*tau3^-1*t1^-1*tau2*t3', (2, 121): 't2*tau3^-1*t1^-1*tau2*t3', (2, 84): 't3', (2, 85): 't3'}