U-tiling: UQC641
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc423 |
*2224 |
(2,3,3) |
{5,4} |
{4.6.3.3.6}{6.3.6.3} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc1361
|
|
P4/mmm |
123 |
tetragonal |
{5,4} |
6 |
(2,3) |
G
|
False
|
|
sqc11940
|
|
I41/acd |
142 |
tetragonal |
{5,4} |
24 |
(2,4) |
D
|
False
|
|
sqc6857
|
|
P42/nnm |
134 |
tetragonal |
{4,5} |
12 |
(2,3) |
Topological data
Vertex degrees | {5,4} |
2D vertex symbol | {4.6.3.3.6}{6.3.6.3} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<54.1:224:8 4 5 34 35 11 12 41 42 22 18 19 48 49 25 26 62 63 50 32 33 64 39 40 71 46 47 53 54 167 168 85 60 61 67 68 195 196 74 75 209 210 92 81 82 118 119 88 89 223 224 95 96 139 140 120 102 103 153 154 134 109 110 160 161 127 116 117 123 124 181 182 130 131 188 189 137 138 176 144 145 202 203 169 151 152 183 158 159 190 165 166 172 173 216 217 179 180 186 187 193 194 211 200 201 218 207 208 214 215 221 222,2 6 11 19 84 9 13 26 98 16 20 25 105 23 27 126 30 34 53 47 112 37 41 67 61 133 44 48 74 147 51 55 75 140 58 62 88 175 65 69 89 119 72 76 182 79 83 95 103 86 90 154 93 97 124 100 104 123 107 111 137 145 114 118 130 152 121 125 128 132 173 135 139 180 142 146 179 149 153 172 156 160 186 201 196 163 167 193 208 189 170 174 177 181 184 188 215 191 195 222 198 202 214 224 205 209 221 217 212 216 219 223,78 3 5 7 92 10 12 14 99 17 19 21 120 24 26 28 106 31 33 35 127 38 40 42 141 45 47 49 134 52 54 56 169 59 61 63 113 66 68 70 176 73 75 77 80 82 84 148 87 89 91 94 96 98 101 103 105 108 110 112 115 117 119 122 124 126 129 131 133 136 138 140 143 145 147 150 152 154 190 157 159 161 183 164 166 168 171 173 175 178 180 182 185 187 189 192 194 196 218 199 201 203 211 206 208 210 213 215 217 220 222 224:3 6 4 6 4 3 4 4 3 3 3 6 3 6 3 6 6 3 3 6 3 6 3 3 3 3 3 3,5 4 5 5 5 5 4 5 4 5 5 5 5 5 4 5 4 4 5 4 5 4 5 5> {(1, 213): 'tau1^-1*t3', (1, 216): 't2*tau3^-1*t1^-1*tau2', (1, 67): 't2^-1', (1, 185): 'tau1^-1', (1, 108): 't3', (0, 126): 't2', (1, 90): 'tau3', (2, 14): 't1^-1', (1, 48): 'tau2^-1', (2, 56): 'tau3', (1, 207): 't3', (1, 74): 't3', (2, 217): 't2^-1*tau3*t1*tau2^-1', (1, 52): 't3^-1', (0, 216): 't2', (1, 192): 'tau1', (1, 62): 'tau3', (0, 133): 't3^-1', (1, 20): 't1^-1', (0, 154): 'tau1', (1, 66): 't2^-1', (0, 189): 'tau1', (2, 21): 't1^-1', (2, 175): 'tau2', (1, 76): 'tau2^-1', (0, 63): 't2^-1', (1, 109): 't3', (2, 147): 'tau3^-1', (0, 222): 't2^-1', (2, 203): 'tau2^-1*t1*tau3*t2^-1', (1, 130): 't2', (0, 215): 't2', (0, 223): 't2^-1', (1, 200): 't3^-1', (1, 115): 't2^-1', (2, 42): 'tau2^-1', (1, 220): 'tau1*t3^-1', (0, 217): 'tau1*t3^-1', (1, 202): 'tau2*t1^-1*tau3^-1*t2', (1, 125): 't1', (0, 196): 't3^-1*tau1', (0, 49): 't3^-1', }