U-tiling: UQC665
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc444 |
*2224 |
(2,3,3) |
{4,3} |
{4.8.4.8}{8.8.4} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc1429
|
|
P4/mmm |
123 |
tetragonal |
{3,4} |
8 |
(2,3) |
G
|
False
|
|
sqc12030
|
|
I41/acd |
142 |
tetragonal |
{3,4} |
32 |
(2,4) |
D
|
False
|
|
sqc6954
|
|
P42/nnm |
134 |
tetragonal |
{3,4} |
16 |
(2,3) |
Topological data
Vertex degrees | {4,3} |
2D vertex symbol | {4.8.4.8}{8.8.4} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<48.1:224:15 4 5 34 35 22 11 12 41 42 18 19 48 49 25 26 62 63 43 32 33 57 39 40 46 47 71 53 54 167 168 60 61 85 67 68 195 196 74 75 209 210 99 81 82 118 119 88 89 223 224 120 95 96 139 140 102 103 153 154 141 109 110 160 161 148 116 117 123 124 181 182 169 130 131 188 189 176 137 138 144 145 202 203 151 152 197 158 159 204 165 166 172 173 216 217 179 180 211 186 187 218 193 194 200 201 207 208 214 215 221 222,2 10 6 82 84 9 13 96 98 16 24 20 103 105 23 27 124 126 30 52 34 110 112 37 66 41 131 133 44 73 48 145 147 51 55 138 140 58 87 62 173 175 65 69 117 119 72 76 180 182 79 94 83 86 90 152 154 93 97 100 122 104 107 136 111 114 129 118 121 125 128 132 135 139 142 178 146 149 171 153 156 185 160 194 196 163 192 167 187 189 170 174 177 181 184 188 191 195 198 213 202 222 224 205 220 209 215 217 212 216 219 223,8 3 5 7 10 12 14 22 17 19 21 24 26 28 50 31 33 35 64 38 40 42 71 45 47 49 52 54 56 85 59 61 63 66 68 70 73 75 77 92 80 82 84 87 89 91 94 96 98 120 101 103 105 134 108 110 112 127 115 117 119 122 124 126 129 131 133 136 138 140 176 143 145 147 169 150 152 154 183 157 159 161 190 164 166 168 171 173 175 178 180 182 185 187 189 192 194 196 211 199 201 203 218 206 208 210 213 215 217 220 222 224:8 4 4 8 4 4 4 4 4 4 4 8 4 8 8 8 8 8 4 4,3 4 4 3 4 4 3 4 3 4 3 4 4 3 4 4 4 3 4 3 3 3 3 3 3 4 3 4 3 4 3 4> {(1, 88): 'tau3', (0, 222): 't2^-1', (1, 60): 'tau3', (1, 90): 'tau3', (2, 49): 't3^-1', (1, 123): 't1', (1, 46): 'tau2^-1', (1, 209): 'tau2^-1*t1*tau3*t2^-1', (0, 154): 't3', (1, 114): 't2^-1', (0, 173): 't2^-1', (0, 140): 't3^-1', (2, 63): 't2^-1', (0, 216): 't2', (2, 105): 't3', (1, 221): 't2^-1*tau3*t1*tau2^-1', (2, 189): 'tau1', (1, 212): 'tau1^-1*t3', (1, 223): 't2^-1*tau3*t1*tau2^-1', (2, 182): 'tau1^-1', (1, 184): 'tau1^-1', (1, 214): 't2*tau3^-1*t1^-1*tau2', (1, 18): 't1^-1', (1, 76): 'tau2^-1', (0, 63): 't2^-1', (0, 168): 't2^-1', (1, 219): 'tau1*t3^-1', (2, 210): 'tau1^-1*t3', (0, 161): 't3^-1', (1, 146): 'tau2', (2, 217): 'tau1*t3^-1', (1, 51): 't3^-1', (2, 112): 't2^-1', (1, 20): 't1^-1', (0, 223): 't2^-1', (1, 74): 'tau2^-1', (1, 125): 't1', (1, 62): 'tau3', (1, 107): 't3', (1, 65): 't2^-1', (0, 49): 't3^-1', (1, 191): 'tau1', }