U-tiling: UQC67
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc97 |
*344 |
(3,2,1) |
{3,8,4} |
{4.4.4}{4.4.4.4.4.4.4.4}{4.4.4.4} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc10994
|
epr
|
Pm-3n |
223 |
cubic |
{4,8,3} |
20 |
(3,2) |
G
|
False
|
|
sqc11004
|
|
I-43d |
220 |
cubic |
{4,8,3} |
20 |
(3,2) |
D
|
False
|
|
sqc5359
|
|
P-43m |
215 |
cubic |
{8,3,4} |
10 |
(3,2) |
Topological data
Vertex degrees | {3,8,4} |
2D vertex symbol | {4.4.4}{4.4.4.4.4.4.4.4}{4.4.4.4} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<3.1:192:2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140 142 144 146 148 150 152 154 156 158 160 162 164 166 168 170 172 174 176 178 180 182 184 186 188 190 192,21 3 24 33 7 36 49 11 52 73 15 76 77 19 80 23 113 27 116 105 31 108 35 69 39 72 85 43 88 141 47 144 51 97 55 100 121 59 124 133 63 136 129 67 132 71 75 79 109 83 112 87 165 91 168 161 95 164 99 169 103 172 107 111 115 145 119 148 123 153 127 156 131 135 185 139 188 143 147 181 151 184 155 177 159 180 163 167 171 189 175 192 179 183 187 191,9 10 7 8 13 14 19 20 27 28 29 30 41 42 39 40 45 46 47 48 57 58 55 56 61 62 67 68 85 86 83 84 89 90 95 96 103 104 105 106 109 110 99 100 121 122 119 120 129 130 127 128 133 134 123 124 139 140 141 142 145 146 149 150 151 152 155 156 161 162 159 160 165 166 169 170 163 164 167 168 173 174 175 176 179 180 181 182 185 186 187 188 189 190 191 192:4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4,3 8 4 3 4 4 3 8 3 4 8 3 4 8 3 4 8 8 3 3> {(2, 188): 't2^-1', (2, 189): 't2^-1', (2, 184): 'tau1^-1*t3*tau2', (2, 57): 't1', (1, 184): 't2', (2, 52): 'tau3', (2, 53): 'tau3', (1, 116): 'tau3^-1', (1, 119): 'tau3^-1', (2, 172): 't1*tau3', (2, 173): 't1*tau3', (1, 107): 't3^-1', (2, 168): 'tau1^-1', (2, 56): 't1', (2, 160): 'tau2', (2, 161): 'tau2', (1, 60): 't2', (2, 185): 'tau1^-1*t3*tau2', (1, 191): 'tau1*t3^-1*tau2^-1', (1, 72): 't1', (1, 75): 't1', (2, 128): 't3^-1', (2, 125): 'tau1', (1, 187): 't2', (1, 188): 'tau1*t3^-1*tau2^-1', (1, 63): 't2', (1, 176): 'tau3*t1', (1, 179): 'tau3*t1', (1, 180): 'tau1', (1, 183): 'tau1', (2, 108): 't2^-1', (2, 109): 't2^-1', (1, 44): 'tau2^-1', (1, 47): 'tau2^-1', (1, 28): 't3', (2, 77): 't3'}