U-tiling: UQC803
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc624 |
*2224 |
(2,4,3) |
{5,3} |
{4.12.3.12.4}{12.3.3} |
s-nets
No items to display.
Topological data
Vertex degrees | {5,3} |
2D vertex symbol | {4.12.3.12.4}{12.3.3} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<67.2:256:17 4 5 94 95 16 25 12 13 110 111 20 21 118 119 32 28 29 142 143 49 36 37 126 127 64 65 44 45 150 151 80 52 53 166 167 88 81 60 61 158 159 68 69 198 199 104 97 76 77 134 135 84 85 206 207 113 92 93 112 100 101 174 175 137 108 109 116 117 144 161 124 125 160 169 132 133 152 140 141 193 148 149 201 156 157 164 165 208 172 173 200 225 180 181 222 223 216 233 188 189 214 215 224 196 197 204 205 241 212 213 249 220 221 228 229 254 255 248 236 237 246 247 256 244 245 252 253,2 35 20 6 8 10 43 28 14 16 18 51 22 24 26 67 30 32 34 52 38 40 42 68 46 48 50 54 56 58 187 84 62 64 66 70 72 74 219 100 78 80 82 235 86 88 90 131 116 94 96 98 251 102 104 106 155 140 110 112 114 171 118 120 122 179 164 126 128 130 172 134 136 138 203 142 144 146 211 196 150 152 154 204 158 160 162 227 166 168 170 174 176 178 228 182 184 186 236 190 192 194 243 198 200 202 206 208 210 244 214 216 218 252 222 224 226 230 232 234 238 240 242 246 248 250 254 256,33 3 5 7 24 41 11 13 15 32 49 19 21 23 65 27 29 31 35 37 39 56 43 45 47 72 51 53 55 185 59 61 63 88 67 69 71 217 75 77 79 104 233 83 85 87 129 91 93 95 120 249 99 101 103 153 107 109 111 144 169 115 117 119 177 123 125 127 168 131 133 135 176 201 139 141 143 209 147 149 151 200 155 157 159 208 225 163 165 167 171 173 175 179 181 183 232 187 189 191 240 241 195 197 199 203 205 207 211 213 215 248 219 221 223 256 227 229 231 235 237 239 243 245 247 251 253 255:3 12 4 3 12 12 4 12 3 4 3 4 4 3 4 3 3 3 3 3 3 3 3 4 3 3 3 4,3 5 3 5 3 3 5 5 3 5 3 5 3 3 5 3 3 5 3 3 5 5 3 3 5 5 3 5 5 3 5 5> {(0, 96): 't2', (0, 173): 'tau3^-1', (1, 83): 't3', (2, 127): 't3', (1, 227): 't3^-1', (2, 103): 't2', (0, 151): 't2', (2, 240): 't2', (0, 56): 't3^-1', (1, 235): 't3', (1, 98): 't2', (0, 144): 't2', (0, 159): 't3^-1', (0, 247): 'tau1^-1*t3', (2, 63): 't3^-1', (0, 47): 't2', (0, 197): 'tau3^-1', (2, 151): 't2', (1, 242): 't2', (0, 174): 'tau3^-1', (0, 255): 'tau1*t3^-1', (0, 205): 'tau2', (0, 22): 't1^-1', (0, 39): 't3', (0, 198): 'tau3^-1', (0, 245): 't2*tau3^-1*t1^-1*tau2', (1, 123): 't3', (0, 183): 'tau1', (0, 206): 'tau2', (0, 176): 't3', (0, 253): 't2^-1*tau3*t1*tau2^-1', (1, 99): 't2', (0, 191): 'tau1^-1', (0, 141): 't1', (0, 246): 't2*tau3^-1*t1^-1*tau2', (0, 184): 't3^-1', (2, 183): 't3', (1, 195): 't2^-1', (0, 254): 't2^-1*tau3*t1*tau2^-1', (0, 160): 't3^-1', (0, 166): 'tau2', (2, 191): 't3^-1', (0, 142): 't1', (2, 96): 't2', (0, 21): 't1^-1', (0, 165): 'tau2', }