U-tiling: UQC804
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc624 |
*2224 |
(2,4,3) |
{5,3} |
{4.12.3.12.4}{12.3.3} |
s-nets
No items to display.
Topological data
Vertex degrees | {5,3} |
2D vertex symbol | {4.12.3.12.4}{12.3.3} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<67.1:256:9 4 5 38 39 24 12 13 46 47 32 25 20 21 54 55 28 29 70 71 57 36 37 56 73 44 45 72 81 52 53 60 61 190 191 88 97 68 69 76 77 222 223 104 84 85 238 239 105 92 93 134 135 120 100 101 254 255 108 109 158 159 144 137 116 117 174 175 153 124 125 182 183 168 145 132 133 176 140 141 206 207 148 149 214 215 200 156 157 208 201 164 165 230 231 193 172 173 209 180 181 232 217 188 189 240 196 197 246 247 204 205 212 213 248 220 221 256 241 228 229 249 236 237 244 245 252 253,2 91 12 6 8 10 107 14 16 18 115 28 22 24 26 139 30 32 34 123 60 38 40 42 147 76 46 48 50 163 84 54 56 58 155 62 64 66 195 100 70 72 74 131 78 80 82 203 86 88 90 108 94 96 98 171 102 104 106 110 112 114 140 118 120 122 156 126 128 130 148 134 136 138 142 144 146 150 152 154 158 160 162 204 166 168 170 196 174 176 178 219 212 182 184 186 211 220 190 192 194 198 200 202 206 208 210 214 216 218 222 224 226 251 244 230 232 234 243 252 238 240 242 246 248 250 254 256,89 3 5 7 16 105 11 13 15 113 19 21 23 32 137 27 29 31 121 35 37 39 64 145 43 45 47 80 161 51 53 55 88 153 59 61 63 193 67 69 71 104 129 75 77 79 201 83 85 87 91 93 95 112 169 99 101 103 107 109 111 115 117 119 144 123 125 127 160 131 133 135 152 139 141 143 147 149 151 155 157 159 163 165 167 208 171 173 175 200 217 179 181 183 216 209 187 189 191 224 195 197 199 203 205 207 211 213 215 219 221 223 249 227 229 231 248 241 235 237 239 256 243 245 247 251 253 255:3 12 4 12 4 3 12 12 3 3 3 4 3 4 3 4 4 3 3 4 3 4 3 3 3 3 3 3,3 5 3 3 5 3 3 5 3 5 3 5 3 3 5 3 3 5 3 5 5 5 5 5 3 5 3 5 3 5 3 5> {(0, 103): 't2', (1, 251): 'tau1*t3^-1', (1, 114): 't1', (0, 198): 't2^-1', (2, 127): 't3', (2, 215): 'tau1^-1', (0, 199): 't2^-1', (0, 63): 't3^-1', (2, 240): 't2*tau3^-1*t1^-1*tau2', (0, 56): 't3^-1', (1, 98): 'tau3', (0, 144): 't2', (2, 248): 't2^-1*tau3*t1*tau2^-1', (2, 80): 'tau2^-1', (2, 63): 't3^-1', (0, 152): 't3^-1', (1, 75): 't2^-1', (2, 151): 't2', (0, 240): 'tau1^-1*t3', (0, 102): 't2', (0, 40): 't2', (1, 211): 'tau1^-1', (0, 248): 'tau1*t3^-1', (2, 247): 'tau1^-1*t3', (0, 167): 't3^-1', (2, 64): 'tau3', (2, 47): 't2', (1, 26): 't1^-1', (0, 245): 't2', (1, 123): 't3', (0, 183): 't3', (2, 16): 't1^-1', (2, 255): 'tau1*t3^-1', (0, 176): 'tau1', (0, 253): 't2^-1', (0, 191): 't3^-1', (2, 24): 't1^-1', (1, 82): 'tau2^-1', (2, 48): 'tau2^-1', (0, 184): 'tau1^-1', (2, 168): 'tau3^-1', (1, 226): 'tau2*t1^-1*tau3^-1*t2', (1, 59): 't3^-1', (1, 187): 'tau1^-1', (1, 50): 'tau2^-1', (2, 191): 'tau1^-1', (1, 242): 't2*tau3^-1*t1^-1*tau2', (1, 66): 'tau3', (1, 147): 't2', (1, 243): 'tau1^-1*t3', }