U-tiling: UQC90
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc64 |
*344 |
(2,2,2) |
{3,4} |
{3.12.12}{12.12.12.12} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc11246
|
|
Pm-3n |
223 |
cubic |
{3,4} |
30 |
(2,2) |
G
|
False
|
|
sqc11236
|
|
I-43d |
220 |
cubic |
{3,4} |
30 |
(2,2) |
D
|
False
|
|
sqc5594
|
|
P-43m |
215 |
cubic |
{3,4} |
15 |
(2,2) |
Topological data
Vertex degrees | {3,4} |
2D vertex symbol | {3.12.12}{12.12.12.12} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<4.1:192:21 22 4 33 34 8 49 50 12 73 74 16 77 78 20 24 113 114 28 105 106 32 36 69 70 40 85 86 44 141 142 48 52 97 98 56 121 122 60 133 134 64 129 130 68 72 76 80 109 110 84 88 165 166 92 161 162 96 100 169 170 104 108 112 116 145 146 120 124 153 154 128 132 136 185 186 140 144 148 181 182 152 156 177 178 160 164 168 172 189 190 176 180 184 188 192,9 3 8 13 7 11 20 15 28 29 19 41 23 40 45 27 31 48 57 35 56 61 39 43 68 47 85 51 84 89 55 59 96 63 104 105 67 109 71 100 121 75 120 129 79 128 133 83 87 124 91 140 141 95 145 99 149 103 107 152 111 156 161 115 160 165 119 123 169 127 131 164 135 168 173 139 143 176 147 180 151 181 155 185 159 163 167 171 188 175 189 179 183 192 187 191,2 11 12 6 15 16 10 14 18 31 32 22 43 44 26 47 48 30 34 59 60 38 63 64 42 46 50 87 88 54 91 92 58 62 66 107 108 70 111 112 74 123 124 78 131 132 82 135 136 86 90 94 143 144 98 147 148 102 151 152 106 110 114 163 164 118 167 168 122 126 171 172 130 134 138 175 176 142 146 150 154 183 184 158 187 188 162 166 170 174 178 191 192 182 186 190:3 12 3 12 12 3 3 12 3 12 3 12 3 3,3 4 3 3 3 4 3 3 4 3 3 4 3 3 3 4 3 3 4 3 3 3 3 3 3 3 3 3 3 3> {(2, 190): 't2^-1', (2, 191): 't2^-1', (1, 124): 'tau1', (0, 60): 't2', (0, 61): 't2', (1, 112): 'tau2^-1', (2, 54): 'tau3', (2, 55): 'tau3', (0, 184): 't2', (0, 180): 'tau1', (0, 181): 'tau1', (2, 174): 't1*tau3', (2, 175): 't1*tau3', (1, 108): 't2^-1', (0, 44): 'tau2^-1', (0, 45): 'tau2^-1', (1, 184): 'tau1^-1*t3*tau2', (2, 162): 'tau2', (2, 163): 'tau2', (1, 88): 'tau3^-1', (2, 158): 'tau2^-1*t3^-1*tau1', (2, 159): 'tau2^-1*t3^-1*tau1', (0, 188): 'tau1*t3^-1*tau2^-1', (0, 28): 't3', (0, 29): 't3', (2, 170): 'tau1^-1', (2, 59): 't1', (0, 173): 'tau2*t3*tau1^-1', (2, 34): 't1^-1', (1, 76): 't3', (0, 12): 't1^-1', (2, 130): 't3^-1', (2, 131): 't3^-1', (1, 56): 't1', (2, 127): 'tau1', (1, 188): 't2^-1', (0, 116): 'tau3^-1', (0, 117): 'tau3^-1', (2, 110): 't2^-1', (2, 111): 't2^-1', (0, 185): 't2', (1, 172): 't1*tau3', (0, 156): 't1^-1*tau3^-1', (0, 157): 't1^-1*tau3^-1', (0, 73): 't1'}