h-net: hqc2362


Topological data

Orbifold symbol*4444
Transitivity (vertex, edge, ring)(6,6,2)
Vertex degrees{4,8,8,4,3,8}
2D vertex symbol {8.8.8.8}{8.8.8.8.8.8.8.8}{8.8.8.8.8.8.8.8}{8.3.3.8}{8.3.3}{3.3.3.3.3.3.3.3}
Vertex coordination sequence [(4, 28, 148, 772, 3184, 15740, 67052), (8, 40, 216, 912, 4512, 19160, 95232), (8, 40, 152, 736, 3200, 15976, 67576), (4, 12, 40, 166, 828, 3548, 17664, 74910), (3, 7, 16, 87, 359, 1712, 7568, 36748, 160065), (8, 4, 28, 144, 572, 2828, 12188, 60692)]
Delaney-Dress Symbol <2362.2:14:2 4 6 8 10 12 14,1 3 5 7 8 11 14 13,1 2 3 4 5 6 9 10 11 12 13 14:8 3,4 8 8 4 3 8>
Dual net hqc2288

Derived s-nets

s-nets with faithful topology

3 records listed.
Image s-net name Other names Space group Space group number Symmetry class Vertex degree(s) Vertices per primitive unit cell Transitivity (Vertex, Edge)
Full image sqc6367 I-4m2 119 tetragonal {4,8,8,4,3,8} 12 (6,6)
Full image sqc6364 I-4m2 119 tetragonal {4,8,8,4,3,8} 12 (6,6)
Full image sqc6385 I-4m2 119 tetragonal {4,8,8,4,3,8} 12 (6,6)

s-nets with edge collapse


Derived U-tilings

2 records listed.
Image U-tiling name PGD Subgroup Transitivity (Vert,Edge,Face) Vertex Degree Vertex Symbol P net G net D net
Tiling details UQC5909 *4444 (6,6,2) {4,8,8,4,3,8} {8.8.8.8}{8.8.8.8.8.8.8.8}{8.8.8... No s‑net Snet sqc6367 Snet sqc6385
Tiling details UQC5910 *4444 (6,6,2) {4,8,8,4,3,8} {8.8.8.8}{8.8.8.8.8.8.8.8}{8.8.8... Snet sqc5734 Snet sqc6367 Snet sqc6364

Symmetry-lowered hyperbolic tilings