h-net: hqc2365


Topological data

Orbifold symbol*4444
Transitivity (vertex, edge, ring)(6,6,2)
Vertex degrees{4,8,4,4,8,4}
2D vertex symbol {8.8.8.8}{8.8.8.8.8.8.8.8}{8.3.3.8}{8.8.3.3}{3.3.3.3.3.3.3.3}{8.8.8.8}
Vertex coordination sequence [(4, 28, 84, 360, 892, 3828, 9660, 40720, 103972), (8, 24, 112, 288, 1232, 3096, 13080, 33344, 140552), (4, 14, 32, 148, 392, 1610, 4164, 17568, 45532), (4, 10, 28, 84, 316, 954, 3596, 10464, 38876, 112982), (8, 8, 40, 120, 488, 1256, 5304, 14144, 57288), (4, 12, 28, 72, 244, 996, 2924, 10736, 31476, 116380)]
Delaney-Dress Symbol <2365.2:14:2 4 6 8 10 12 14,1 3 5 13 9 12 11 14,1 2 3 4 7 8 9 10 11 12 13 14:8 3,4 8 4 4 8 4>
Dual net hqc2328

Derived s-nets

s-nets with faithful topology

4 records listed.
Image s-net name Other names Space group Space group number Symmetry class Vertex degree(s) Vertices per primitive unit cell Transitivity (Vertex, Edge)
Full image sqc6432 P-4m2 115 tetragonal {4,8,4,4,8,4} 12 (6,6)
Full image sqc6380 I-4 82 tetragonal {4,8,4,4,8,4} 12 (6,7)
Full image sqc6377 I-4m2 119 tetragonal {4,8,4,4,8,4} 12 (6,6)
Full image sqc6431 I-4m2 119 tetragonal {4,8,4,4,8,4} 12 (6,6)

s-nets with edge collapse


Derived U-tilings

2 records listed.
Image U-tiling name PGD Subgroup Transitivity (Vert,Edge,Face) Vertex Degree Vertex Symbol P net G net D net
Tiling details UQC5915 *4444 (6,6,2) {4,8,4,4,8,4} {8.8.8.8}{8.8.8.8.8.8.8.8}{8.3.3... Snet sqc5611 Snet sqc6380 Snet sqc6431
Tiling details UQC5916 *4444 (6,6,2) {4,8,4,4,8,4} {8.8.8.8}{8.8.8.8.8.8.8.8}{8.3.3... Snet sqc6432 Snet sqc6380 Snet sqc6377

Symmetry-lowered hyperbolic tilings