Orbifold symbol | 2*44 |
Transitivity (vertex, edge, ring) | (3,3,1) |
Vertex degrees | {4,8,3} |
2D vertex symbol | {6.6.6.6}{6.6.6.6.6.6.6.6}{6.6.6} |
Vertex coordination sequence | [(4, 28, 64, 280, 744, 2924, 8516, 31088, 95516), (8, 20, 92, 240, 956, 2756, 10144, 30976, 108992), (3, 11, 33, 122, 377, 1313, 4175, 14240, 46037)] |
Delaney-Dress Symbol | <327.1:6:2 4 6,1 3 5 6,1 2 3 4 6:6,4 8 3> |
Dual net | hqc202 |
Image | s-net name | Other names | Space group | Space group number | Symmetry class | Vertex degree(s) | Vertices per primitive unit cell | Transitivity (Vertex, Edge) |
---|---|---|---|---|---|---|---|---|
sqc896 | I-4m2 | 119 | tetragonal | {3,8,4} | 6 | (3,3) | ||
sqc4940 | I-4c2 | 120 | tetragonal | {4,8,3} | 12 | (3,4) | ||
sqc4950 | I-4c2 | 120 | tetragonal | {4,8,3} | 12 | (3,4) | ||
sqc4953 | I41/amd | 141 | tetragonal | {4,8,3} | 12 | (3,3) |
Image | U-tiling name | PGD Subgroup | Transitivity (Vert,Edge,Face) | Vertex Degree | Vertex Symbol | P net | G net | D net |
---|---|---|---|---|---|---|---|---|
UQC5851 | *4444 | (6,5,2) | {4,8,3,3,8,4} | {6.6.6.6}{6.6.6.6.6.6.6.6}{6.6.6... | sqc296 | sqc4940 | No s‑net | |
UQC5852 | *4444 | (6,5,2) | {4,8,3,3,8,4} | {6.6.6.6}{6.6.6.6.6.6.6.6}{6.6.6... | sqc896 | sqc4950 | sqc4953 |