|
|
| Systre crystallographic geometry file (.cgd) |
| topcryst |
| Vertices per primitive translational unit | 16 |
| Edges per primitive translational unit | 44 |
| Transitivity (vertex,edge) | (4,5) |
| Vertex degrees | {4,12,4,8} |
| Vertex coordination sequence | [(4, 20, 41, 134, 138, 336, 282, 616, 474, 976), (12, 26, 92, 98, 252, 218, 492, 386, 812, 602), (4, 15, 63, 83, 226, 204, 466, 372, 786, 588), (8, 42, 56, 162, 152, 362, 296, 642, 488, 1002)] |
| Wells’ vertex symbol | [3^2.4^3.5, 3^4.4^20.5^8.6^22.7^8.8^4, 4^5.6, 4^14.6^14] |
| Systre key | (3, 1, 2, 0, 0, 0, 1, 2, 0, 1, 0, 1, 2, 1, 0, 0, 1, 2, 1, 1, 0, 1, 3, 0, 0, 0, 1, 4, 0, 0, 0, 1, 5, 0, 0, 0, 1, 6, 0, 0, 0, 2, 7, 0, 0, 0, 2, 8, 0, 0, 0, 2, 9, 0, 0, 0, 2, 10, 0, 0, 0, 2, 11, 0, 0, 0, 2, 12, 0, 0, 0, 2, 13, 0, 0, 0, 2, 14, 0, 0, 0, 3, 11, 1, 0, 0, 3, 12, 0, 0, 0, 3, 15, 0, 0, 0, 4, 8, 0, 1, 0, 4, 14, 0, 0, 0, 4, 15, 0, 0, 1, 5, 7, 1, 1, 0, 5, 13, 1, 0, 0, 5, 15, 0, 0, 1, 6, 9, 1, 1, 0, 6, 10, 0, 1, 0, 6, 15, 0, 0, 0, 7, 8, 0, 0, 0, 7, 16, 0, 0, 0, 8, 16, 0, 0, 0, 9, 11, 0, 0, 0, 9, 16, 0, 0, -1, 10, 12, 0, 0, 0, 10, 16, 0, 0, -1, 11, 16, 0, 0, -1, 12, 16, 0, 0, -1, 13, 14, 0, 0, 0, 13, 16, 0, 0, 0, 14, 16, 0, 0, 0, 15, 16, 0, 0, -1, 15, 16, 0, 1, -1, 15, 16, 1, 0, -1, 15, 16, 1, 1, -1) |
Spacegroup: P42/mmc
Parameters:
| a | b | c | alpha | beta | gamma |
|---|---|---|---|---|---|
| 2.30359 | 2.30359 | 3.31743 | 90.0 | 90.0 | 90.0 |
Vertex positions:
| X-pos | Y-pos | Z-pos |
|---|---|---|
| 0.05556 | 0.16667 | 0 |
| 0 | 0 | 0.25 |
| 0.27778 | 0.5 | 0 |
| 0.5 | 0.5 | 0.25 |
Edge end points:
Spacegroup: P42/mmc
Parameters:
| a | b | c | alpha | beta | gamma |
|---|---|---|---|---|---|
| 1.4134 | 1.4134 | 3.34192 | 90.0 | 90.0 | 90.0 |
Vertex positions:
| X-pos | Y-pos | Z-pos |
|---|---|---|
| 0.35166 | 0.17107 | 0 |
| 0 | 0 | 0.25 |
| 0.11727 | 0.5 | 0 |
| 0.5 | 0.5 | 0.25 |
Edge end points:
| Image | h-net name | Orbifold symbol | Transitivity (Vert,Edge,Face) | Vertex Degree | 2D Vertex Symbol |
|---|---|---|---|---|---|
![]() |
hqc1810 | *2244 | (4,5,2) | {4,12,4,8} | {3.4.4.3}{3.4.4.3.4.4.3.4.4.3.4.... |