s-net: sqc13878


 
Systre crystallographic geometry file (.cgd)

Links to this net in other databases

topcryst

Topological data

Vertices per primitive translational unit 60
Edges per primitive translational unit 120
Transitivity (vertex,edge)(3,5)
Vertex degrees {8,3,3}
Vertex coordination sequence [(8, 28, 74, 152, 268, 414, 586, 776, 1012, 1278), (3, 8, 26, 73, 152, 268, 414, 586, 776, 1012), (3, 8, 26, 73, 152, 268, 414, 586, 776, 1012)]
Wells’ vertex symbol [3^2.4^4.5^4.6^6.8^8.10^4, 3.4.5, 3.4.5]
Systre key (3, 1, 2, 0, 0, 0, 1, 3, 0, 0, 0, 1, 4, 0, 0, 0, 1, 5, 0, 0, 0, 1, 6, 0, 0, 0, 1, 7, 0, 0, 0, 1, 8, 0, 0, 0, 1, 9, 0, 0, 0, 2, 10, 0, 0, 0, 2, 11, 0, 0, 0, 2, 12, 0, 0, 0, 2, 13, 0, 0, 0, 2, 14, 0, 0, 0, 2, 15, 0, 0, 0, 2, 16, 0, 0, 0, 3, 11, 1, 0, 0, 3, 17, 0, 0, 0, 3, 18, 0, 0, 0, 3, 19, 0, 0, 0, 3, 20, 0, 0, 0, 3, 21, 0, 0, 0, 3, 22, 0, 0, 0, 4, 5, 0, 0, 0, 4, 16, 0, 0, 0, 5, 23, 0, 0, 0, 6, 7, 0, 0, 0, 6, 20, 0, 0, 0, 7, 24, 0, 0, 0, 8, 11, 0, 0, 1, 8, 18, 0, 1, 0, 8, 22, -1, 0, 0, 8, 23, 0, 0, 0, 8, 25, 0, 0, 0, 8, 26, 0, 0, 0, 8, 27, 0, 0, 0, 9, 10, -1, -1, 1, 9, 11, 0, -1, 1, 9, 12, 0, 0, 1, 9, 24, 0, 0, 0, 9, 28, 0, 0, 0, 9, 29, 0, 0, 0, 9, 30, 0, 0, 0, 10, 31, 0, 0, 0, 10, 32, 0, 0, 0, 10, 33, 0, 0, 0, 10, 34, 0, 0, 0, 10, 35, 0, 0, 0, 10, 36, 0, 0, 0, 11, 37, 0, 0, 0, 11, 38, 0, 0, 0, 11, 39, 0, 0, 0, 11, 40, 0, 0, 0, 12, 31, -1, -1, 1, 12, 36, 0, -1, 0, 12, 41, 0, 0, 0, 12, 42, 0, 0, 0, 12, 43, 0, 0, 0, 12, 44, 0, 0, 0, 13, 16, 0, 0, 0, 13, 35, 0, 0, 0, 14, 15, 0, 0, 0, 14, 39, 0, 0, 0, 15, 43, 0, 0, 0, 17, 19, 0, 0, 0, 17, 40, 1, 0, 0, 18, 31, 0, -1, 1, 18, 36, 0, -1, 0, 18, 45, 0, 0, 0, 18, 46, 0, 0, 0, 18, 47, 0, 0, 0, 18, 48, 0, 0, 0, 19, 46, 0, 0, 0, 20, 21, 0, 0, 0, 21, 49, 0, 0, 0, 22, 31, 0, 0, 1, 22, 36, 0, -1, 1, 22, 49, 0, 0, 0, 22, 50, 0, 0, 0, 22, 51, 0, 0, 0, 22, 52, 0, 0, 0, 23, 25, 0, 0, 0, 24, 30, 0, 0, 0, 25, 48, 0, 1, 0, 26, 27, 0, 0, 0, 26, 51, -1, 0, 0, 27, 37, 0, 0, 1, 28, 29, 0, 0, 0, 28, 33, -1, -1, 1, 29, 38, 0, -1, 1, 30, 41, 0, 0, 1, 31, 53, 0, 0, 0, 31, 54, 0, 0, 0, 31, 55, 0, 0, 0, 31, 56, 0, 0, 0, 32, 33, 0, 0, 0, 32, 56, 0, 0, 0, 34, 35, 0, 0, 0, 34, 57, 0, 0, 0, 36, 57, 0, 0, 0, 36, 58, 0, 0, 0, 36, 59, 0, 0, 0, 36, 60, 0, 0, 0, 37, 38, 0, 0, 0, 39, 40, 0, 0, 0, 41, 42, 0, 0, 0, 42, 59, 0, -1, 0, 43, 44, 0, 0, 0, 44, 53, -1, -1, 1, 45, 48, 0, 0, 0, 45, 60, 0, -1, 0, 46, 47, 0, 0, 0, 47, 54, 0, -1, 1, 49, 52, 0, 0, 0, 50, 51, 0, 0, 0, 50, 55, 0, 0, 1, 52, 58, 0, -1, 1, 53, 54, 0, 0, 0, 55, 56, 0, 0, 0, 57, 60, 0, 0, 0, 58, 59, 0, 0, 0)

Geometric data

Systre equilibrium placement (barycentric embedding) maximising unit cell volume

Spacegroup: Ia-3

Parameters:

a b c alpha beta gamma
7.05266 7.05266 7.05266 90.0 90.0 90.0

Vertex positions:

X-pos Y-pos Z-pos
0 0.25 0.385
0.04917 0.17833 0.41583
0.01167 0.34083 0.37417

Edge end points:

Systre coordinates favouring equal edge-lengths

Spacegroup: Ia-3

Parameters:

a b c alpha beta gamma
3.30337 3.30337 3.30337 90.0 90.0 90.0

Vertex positions:

X-pos Y-pos Z-pos
0.25 0.37436 0
0.07635 0.11676 0.4415
0.12526 0.15383 0.18304

Edge end points:

Hyperbolic sources

h-nets with faithful topology

1 record listed.
Image h-net name Orbifold symbol Transitivity (Vert,Edge,Face) Vertex Degree 2D Vertex Symbol
Net details hqc1393 *266 (2,4,4) {3,8} {12.4.3}{3.4.6.4.3.4.6.4}

h-nets with edge collapse

No items to display.