# s-net: sqc14152

## Topological data

 Vertices per primitive translational unit 80 Edges per primitive translational unit 132 Transitivity (vertex,edge) (5,5) Vertex degrees {4,4,3,3,3} Vertex coordination sequence [(4, 11, 28, 53, 74, 124, 186, 225, 306, 415), (4, 10, 22, 39, 72, 104, 152, 245, 268, 356), (3, 6, 11, 21, 42, 78, 109, 162, 242, 293), (3, 4, 7, 15, 31, 59, 99, 132, 205, 302), (3, 3, 3, 9, 18, 39, 69, 105, 141, 240)] Wellsâ€™ vertex symbol [4.7^4.8, 7^4.8.12, 4.7^2, 4^2.6, 4^3] Systre key (3, 1, 2, 0, 0, 0, 1, 3, 0, 0, 0, 1, 4, 0, 0, 0, 1, 5, 0, 0, 0, 2, 6, 0, 0, 0, 2, 7, 0, 0, 0, 2, 8, 0, 0, 0, 3, 8, 0, 0, 0, 3, 9, 0, 0, 0, 3, 10, 0, 0, 0, 4, 11, 0, 0, 0, 4, 12, 0, 0, 0, 4, 13, 0, 0, 0, 5, 14, 0, 0, 0, 5, 15, 0, 0, 0, 5, 16, 0, 0, 0, 6, 17, 0, 0, 0, 6, 18, 0, 0, 0, 6, 19, 0, 0, 0, 7, 20, 0, 0, 0, 7, 21, 0, 0, 0, 7, 22, 0, 0, 0, 8, 23, 0, 0, 0, 8, 24, 0, 0, 0, 9, 17, 1, 0, 0, 9, 25, 0, 0, 0, 9, 26, 0, 0, 0, 10, 20, 1, 0, 0, 10, 27, 0, 0, 0, 10, 28, 0, 0, 0, 11, 29, 0, 0, 0, 11, 30, 0, 0, 0, 12, 31, 0, 0, 0, 12, 32, 0, 0, 0, 13, 23, 0, 1, 0, 13, 33, 0, 0, 0, 13, 34, 0, 0, 0, 14, 35, 0, 0, 0, 14, 36, 0, 0, 0, 15, 37, 0, 0, 0, 15, 38, 0, 0, 0, 16, 24, 0, 1, 0, 16, 33, 0, 0, 1, 16, 34, 0, 0, 1, 17, 39, 0, 0, 0, 17, 40, 0, 0, 0, 18, 41, 0, 0, 0, 18, 42, 0, 0, 0, 19, 29, 0, 0, 0, 19, 43, 0, 0, 0, 20, 39, 0, 0, 1, 20, 40, 0, 0, 1, 21, 44, 0, 0, 0, 21, 45, 0, 0, 0, 22, 35, 0, 0, 0, 22, 46, 0, 0, 0, 23, 47, 0, 0, 0, 23, 48, 0, 0, 0, 24, 49, 0, 0, 0, 24, 50, 0, 0, 0, 25, 51, 0, 0, 0, 25, 52, 0, 0, 0, 26, 31, 0, 0, 0, 26, 53, 0, 0, 0, 27, 54, 0, 0, 0, 27, 55, 0, 0, 0, 28, 37, 0, 0, 0, 28, 56, 0, 0, 0, 29, 57, 0, 0, 0, 30, 57, 0, 0, 0, 30, 58, 0, 0, 0, 31, 59, 0, 0, 0, 32, 59, 0, 0, 0, 32, 60, 0, 0, 0, 33, 61, 0, 0, 0, 33, 62, 0, 0, 0, 34, 63, 0, 0, 0, 34, 64, 0, 0, 0, 35, 65, 0, 0, 0, 36, 65, 0, 0, 0, 36, 66, 0, 0, 0, 37, 67, 0, 0, 0, 38, 67, 0, 0, 0, 38, 68, 0, 0, 0, 39, 62, 0, -1, 0, 39, 64, -1, -1, 0, 40, 61, 0, 0, 0, 40, 63, -1, 0, 0, 41, 69, 0, 0, 0, 41, 70, 0, 0, 0, 42, 47, 0, 0, 0, 42, 70, 0, 0, 0, 43, 57, 0, 0, 0, 43, 58, 0, 0, 0, 44, 71, 0, 0, 0, 44, 72, 0, 0, 0, 45, 49, 0, 0, 0, 45, 72, 0, 0, 0, 46, 65, 0, 0, 0, 46, 66, 0, 0, 0, 47, 73, 0, 0, 0, 48, 51, 0, 0, 0, 48, 74, 0, 0, 0, 49, 75, 0, 0, 0, 50, 54, 0, 0, 0, 50, 76, 0, 0, 0, 51, 77, 0, 0, 0, 52, 77, 0, 0, 0, 52, 78, 0, 0, 0, 53, 59, 0, 0, 0, 53, 60, 0, 0, 0, 54, 79, 0, 0, 0, 55, 79, 0, 0, 0, 55, 80, 0, 0, 0, 56, 67, 0, 0, 0, 56, 68, 0, 0, 0, 58, 61, 0, 0, 0, 60, 63, 0, 0, 0, 61, 66, 0, 0, -1, 62, 69, 0, 1, 0, 62, 71, 0, 1, -1, 63, 68, 0, 0, -1, 64, 78, 0, 1, 0, 64, 80, 0, 1, -1, 69, 73, 0, 0, 0, 70, 73, 0, 0, 0, 71, 75, 0, 0, 0, 72, 75, 0, 0, 0, 74, 77, 0, 0, 0, 74, 78, 0, 0, 0, 76, 79, 0, 0, 0, 76, 80, 0, 0, 0)

## Geometric data

### Systre equilibrium placement (barycentric embedding) maximising unit cell volume

Spacegroup: Pm-3m

Parameters:

a b c alpha beta gamma
8.26748 8.26748 8.26748 90.0 90.0 90.0

Vertex positions:

X-pos Y-pos Z-pos
0 0.13043 0.5
0 0.26087 0.26087
0.1087 0.20652 0.20652
0.16304 0.16304 0.19565
0.17391 0.17391 0.17391

Edge end points:

### Systre coordinates favouring equal edge-lengths

Spacegroup: Pm-3m

Parameters:

a b c alpha beta gamma
4.24268 4.24268 4.24268 90.0 90.0 90.0

Vertex positions:

X-pos Y-pos Z-pos
0 0.1667 0.5
0 0.33788 0.33788
0.16677 0.45564 0.45564
0.2587 0.2587 0.45322
0.34622 0.34622 0.34622

Edge end points:

## Hyperbolic sources

### h-nets with faithful topology

1 record listed.
Image h-net name Orbifold symbol Transitivity (Vert,Edge,Face) Vertex Degree 2D Vertex Symbol
hqc1878 *2223 (5,5,2) {4,4,3,3,3} {7.7.7.7}{7.7.7.7}{7.4.7}{7.4.4}...

### h-nets with edge collapse

No items to display.