Systre crystallographic geometry file (.cgd) |
topcryst |
Vertices per primitive translational unit | 108 |
Edges per primitive translational unit | 240 |
Transitivity (vertex,edge) | (3,5) |
Vertex degrees | {8,4,4} |
Vertex coordination sequence | [(8, 8, 12, 24, 32, 60, 68, 86, 124, 144), (4, 9, 13, 19, 31, 46, 72, 92, 107, 144), (4, 9, 13, 19, 31, 46, 72, 92, 109, 141)] |
Wells’ vertex symbol | [3^8.4^8.5^8.6^4, 3^2.4^2.5.6, 3^2.4^2.5.6] |
Systre key | (3, 1, 2, 0, 0, 0, 1, 3, 0, 0, 0, 1, 4, 0, 0, 0, 1, 5, 0, 0, 0, 1, 6, 0, 0, 0, 1, 7, 0, 0, 0, 1, 8, 0, 0, 0, 1, 9, 0, 0, 0, 2, 3, 0, 0, 0, 2, 4, 0, 0, 0, 2, 10, 0, 0, 0, 3, 5, 0, 0, 0, 3, 11, 0, 0, 0, 4, 7, 0, 0, 0, 4, 12, 0, 0, 0, 5, 6, 0, 0, 0, 5, 13, 0, 0, 0, 6, 8, 0, 0, 0, 6, 14, 0, 0, 0, 7, 9, 0, 0, 0, 7, 15, 0, 0, 0, 8, 9, 0, 0, 0, 8, 16, 0, 0, 0, 9, 17, 0, 0, 0, 10, 11, 0, 0, 0, 10, 18, 0, 0, 0, 10, 19, 0, 0, 0, 11, 19, 0, 0, 0, 11, 20, 0, 0, 0, 12, 15, 0, 0, 0, 12, 21, 0, 0, 0, 12, 22, 0, 0, 0, 13, 14, 0, 0, 0, 13, 23, 0, 0, 0, 13, 24, 0, 0, 0, 14, 24, 0, 0, 0, 14, 25, 0, 0, 0, 15, 22, 0, 0, 0, 15, 26, 0, 0, 0, 16, 17, 0, 0, 0, 16, 27, 0, 0, 0, 16, 28, 0, 0, 0, 17, 28, 0, 0, 0, 17, 29, 0, 0, 0, 18, 19, 0, 0, 0, 18, 30, 0, 0, 0, 18, 31, 0, 0, 0, 19, 20, 0, 0, 0, 19, 31, 0, 0, 0, 19, 32, 0, 0, 0, 19, 33, 0, 0, 0, 19, 34, 0, 0, 0, 20, 34, 0, 0, 0, 20, 35, 0, 0, 0, 21, 22, 0, 0, 0, 21, 36, 0, 0, 0, 21, 37, 0, 0, 0, 22, 26, 0, 0, 0, 22, 37, 0, 0, 0, 22, 38, 0, 0, 0, 22, 39, 0, 0, 0, 22, 40, 0, 0, 0, 23, 24, 0, 0, 0, 23, 41, 0, 0, 0, 23, 42, 0, 0, 0, 24, 25, 0, 0, 0, 24, 42, 0, 0, 0, 24, 43, 0, 0, 0, 24, 44, 0, 0, 0, 24, 45, 0, 0, 0, 25, 43, 0, 0, 0, 25, 46, 0, 0, 0, 26, 40, 0, 0, 0, 26, 47, 0, 0, 0, 27, 28, 0, 0, 0, 27, 48, 0, 0, 0, 27, 49, 0, 0, 0, 28, 29, 0, 0, 0, 28, 49, 0, 0, 0, 28, 50, 0, 0, 0, 28, 51, 0, 0, 0, 28, 52, 0, 0, 0, 29, 52, 0, 0, 0, 29, 53, 0, 0, 0, 30, 54, 0, 0, 0, 30, 55, 0, 0, 0, 30, 56, 0, 0, 0, 31, 32, 0, 0, 0, 31, 56, 0, 0, 0, 32, 33, 0, 0, 0, 32, 57, 0, 0, 0, 33, 34, 0, 0, 0, 33, 58, 0, 0, 0, 34, 59, 0, 0, 0, 35, 59, 0, 0, 0, 35, 60, 0, 0, 0, 35, 61, 0, 0, 0, 36, 62, 0, 0, 0, 36, 63, 0, 0, 0, 36, 64, 0, 0, 0, 37, 38, 0, 0, 0, 37, 64, 0, 0, 0, 38, 39, 0, 0, 0, 38, 65, 0, 0, 0, 39, 40, 0, 0, 0, 39, 66, 0, 0, 0, 40, 67, 0, 0, 0, 41, 63, 1, 0, 0, 41, 68, 0, 0, 0, 41, 69, 0, 0, 0, 42, 45, 0, 0, 0, 42, 69, 0, 0, 0, 43, 44, 0, 0, 0, 43, 70, 0, 0, 0, 44, 45, 0, 0, 0, 44, 71, 0, 0, 0, 45, 72, 0, 0, 0, 46, 70, 0, 0, 0, 46, 73, 0, 0, 0, 46, 74, 0, 0, 0, 47, 67, 0, 0, 0, 47, 73, 0, 1, 0, 47, 75, 0, 0, 0, 48, 60, 0, 0, 1, 48, 76, 0, 0, 0, 48, 77, 0, 0, 0, 49, 50, 0, 0, 0, 49, 76, 0, 0, 0, 50, 51, 0, 0, 0, 50, 78, 0, 0, 0, 51, 52, 0, 0, 0, 51, 79, 0, 0, 0, 52, 80, 0, 0, 0, 53, 54, 1, 1, 1, 53, 80, 0, 0, 0, 53, 81, 0, 0, 0, 54, 55, 0, 0, 0, 54, 56, 0, 0, 0, 54, 80, -1, -1, -1, 54, 81, -1, -1, -1, 54, 82, 0, 0, 0, 54, 83, 0, 0, 0, 55, 81, -1, -1, -1, 55, 84, 0, 0, 0, 56, 83, 0, 0, 0, 57, 58, 0, 0, 0, 57, 65, 0, -1, 0, 57, 85, 0, 0, 0, 58, 72, -1, -1, -1, 58, 85, 0, 0, 0, 59, 60, 0, 0, 0, 59, 86, 0, 0, 0, 60, 61, 0, 0, 0, 60, 76, 0, 0, -1, 60, 77, 0, 0, -1, 60, 86, 0, 0, 0, 60, 87, 0, 0, 0, 61, 77, 0, 0, -1, 61, 88, 0, 0, 0, 62, 63, 0, 0, 0, 62, 68, -1, 0, 0, 62, 89, 0, 0, 0, 63, 64, 0, 0, 0, 63, 68, -1, 0, 0, 63, 69, -1, 0, 0, 63, 90, 0, 0, 0, 63, 91, 0, 0, 0, 64, 91, 0, 0, 0, 65, 66, 0, 0, 0, 65, 85, 0, 1, 0, 66, 79, 0, 0, -1, 66, 85, 0, 1, 0, 67, 73, 0, 1, 0, 67, 92, 0, 0, 0, 68, 93, 0, 0, 0, 69, 90, 1, 0, 0, 70, 73, 0, 0, 0, 70, 94, 0, 0, 0, 71, 72, 0, 0, 0, 71, 78, 1, 0, 0, 71, 85, 1, 1, 1, 72, 85, 1, 1, 1, 73, 74, 0, 0, 0, 73, 75, 0, -1, 0, 73, 92, 0, -1, 0, 73, 94, 0, 0, 0, 74, 75, 0, -1, 0, 74, 95, 0, 0, 0, 75, 96, 0, 0, 0, 76, 87, 0, 0, 1, 77, 97, 0, 0, 0, 78, 79, 0, 0, 0, 78, 85, 0, 1, 1, 79, 85, 0, 1, 1, 80, 82, 1, 1, 1, 81, 98, 0, 0, 0, 82, 83, 0, 0, 0, 82, 99, 0, 0, 0, 83, 100, 0, 0, 0, 84, 89, 0, 0, 0, 84, 98, -1, -1, -1, 84, 101, 0, 0, 0, 86, 87, 0, 0, 0, 86, 102, 0, 0, 0, 87, 103, 0, 0, 0, 88, 93, 0, 0, 0, 88, 97, 0, 0, -1, 88, 101, 1, 0, 0, 89, 93, -1, 0, 0, 89, 101, 0, 0, 0, 90, 91, 0, 0, 0, 90, 104, 0, 0, 0, 91, 105, 0, 0, 0, 92, 94, 0, 1, 0, 92, 106, 0, 0, 0, 93, 101, 1, 0, 0, 94, 107, 0, 0, 0, 95, 96, 0, -1, 0, 95, 97, 0, 0, 0, 95, 101, 1, 0, 1, 96, 98, 0, 0, 0, 96, 101, 1, 1, 1, 97, 101, 1, 0, 1, 98, 101, 1, 1, 1, 99, 100, 0, 0, 0, 99, 106, -1, -1, 0, 99, 108, 0, 0, 0, 100, 105, 0, -1, 0, 100, 108, 0, 0, 0, 102, 103, 0, 0, 0, 102, 104, 0, -1, -1, 102, 108, 0, 0, -1, 103, 107, -1, 0, -1, 103, 108, 0, 0, -1, 104, 105, 0, 0, 0, 104, 108, 0, 1, 0, 105, 108, 0, 1, 0, 106, 107, 0, 1, 0, 106, 108, 1, 1, 0, 107, 108, 1, 0, 0) |
Spacegroup: Ia-3d
Parameters:
a | b | c | alpha | beta | gamma |
---|---|---|---|---|---|
11.33317 | 11.33317 | 11.33317 | 90.0 | 90.0 | 90.0 |
Vertex positions:
X-pos | Y-pos | Z-pos |
---|---|---|
0 | 0.25 | 0.375 |
0.0566 | 0.19861 | 0.40035 |
0.07535 | 0.22639 | 0.3934 |
Edge end points:
Spacegroup: Ia-3d
Parameters:
a | b | c | alpha | beta | gamma |
---|---|---|---|---|---|
8.90812 | 8.90812 | 8.90812 | 90.0 | 90.0 | 90.0 |
Vertex positions:
X-pos | Y-pos | Z-pos |
---|---|---|
0 | 0.25 | 0.375 |
0.0663 | 0.29557 | 0.2967 |
0.1116 | 0.24427 | 0.38568 |
Edge end points:
Image | h-net name | Orbifold symbol | Transitivity (Vert,Edge,Face) | Vertex Degree | 2D Vertex Symbol |
---|---|---|---|---|---|
hqc1300 | *246 | (2,4,4) | {4,8} | {4.3.3.12}{3.3.3.3.3.3.3.3} |