Systre crystallographic geometry file (.cgd) |
topcryst |
Vertices per primitive translational unit | 116 |
Edges per primitive translational unit | 264 |
Transitivity (vertex,edge) | (4,6) |
Vertex degrees | {4,4,12,4} |
Vertex coordination sequence | [(4, 14, 22, 32, 86, 122, 165, 290, 338, 375), (4, 14, 18, 42, 72, 112, 195, 271, 306, 423), (12, 12, 24, 72, 96, 120, 266, 300, 306, 500), (4, 12, 36, 32, 60, 180, 202, 204, 416, 436)] |
Wells’ vertex symbol | [3^2.4.5^2.6, 3^2.4.5^2.6, 3^12.4^12.5^12.6^12.7^12.8^6, 5^4.8^2] |
Systre key | (3, 1, 2, 0, 0, 0, 1, 3, 0, 0, 0, 1, 4, 0, 0, 0, 1, 5, 0, 0, 0, 1, 6, 0, 0, 0, 1, 7, 0, 0, 0, 1, 8, 0, 0, 0, 1, 9, 0, 0, 0, 1, 10, 0, 0, 0, 1, 11, 0, 0, 0, 1, 12, 0, 0, 0, 1, 13, 0, 0, 0, 2, 3, 0, 0, 0, 2, 4, 0, 0, 0, 2, 14, 0, 0, 0, 3, 5, 0, 0, 0, 3, 15, 0, 0, 0, 4, 6, 0, 0, 0, 4, 16, 0, 0, 0, 5, 7, 0, 0, 0, 5, 17, 0, 0, 0, 6, 8, 0, 0, 0, 6, 18, 0, 0, 0, 7, 9, 0, 0, 0, 7, 19, 0, 0, 0, 8, 10, 0, 0, 0, 8, 20, 0, 0, 0, 9, 11, 0, 0, 0, 9, 21, 0, 0, 0, 10, 12, 0, 0, 0, 10, 22, 0, 0, 0, 11, 13, 0, 0, 0, 11, 23, 0, 0, 0, 12, 13, 0, 0, 0, 12, 24, 0, 0, 0, 13, 25, 0, 0, 0, 14, 26, 0, 0, 0, 14, 27, 0, 0, 0, 14, 28, 0, 0, 0, 15, 27, 0, 0, 0, 15, 29, 0, 0, 0, 15, 30, 0, 0, 0, 16, 28, 0, 0, 0, 16, 31, 0, 0, 0, 16, 32, 0, 0, 0, 17, 30, 0, 0, 0, 17, 33, 0, 0, 0, 17, 34, 0, 0, 0, 18, 32, 0, 0, 0, 18, 35, 0, 0, 0, 18, 36, 0, 0, 0, 19, 34, 0, 0, 0, 19, 37, 0, 0, 0, 19, 38, 0, 0, 0, 20, 35, 0, 0, 0, 20, 39, 0, 0, 0, 20, 40, 0, 0, 0, 21, 36, 1, 0, 0, 21, 37, 0, 0, 0, 21, 41, 0, 0, 0, 22, 33, 0, 1, 0, 22, 40, 0, 0, 0, 22, 42, 0, 0, 0, 23, 41, 0, 0, 0, 23, 43, 0, 0, 0, 23, 44, 0, 0, 0, 24, 42, 0, 0, 0, 24, 45, 0, 0, 0, 24, 46, 0, 0, 0, 25, 26, 0, 0, 1, 25, 44, 0, 0, 0, 25, 45, 0, 0, 0, 26, 27, 0, 0, 0, 26, 28, 0, 0, 0, 26, 44, 0, 0, -1, 26, 45, 0, 0, -1, 26, 47, 0, 0, 0, 26, 48, 0, 0, 0, 26, 49, 0, 0, 0, 26, 50, 0, 0, 0, 26, 51, 0, 0, 0, 26, 52, 0, 0, 0, 27, 49, 0, 0, 0, 28, 52, 0, 0, 0, 29, 53, 0, 0, 0, 29, 54, 0, 0, 0, 29, 55, 0, 0, 0, 30, 33, 0, 0, 0, 30, 56, 0, 0, 0, 31, 57, 0, 0, 0, 31, 58, 0, 0, 0, 31, 59, 0, 0, 0, 32, 36, 0, 0, 0, 32, 60, 0, 0, 0, 33, 34, 0, 0, 0, 33, 40, 0, -1, 0, 33, 42, 0, -1, 0, 33, 56, 0, 0, 0, 33, 61, 0, 0, 0, 33, 62, 0, 0, 0, 33, 63, 0, 0, 0, 33, 64, 0, 0, 0, 33, 65, 0, 0, 0, 34, 63, 0, 0, 0, 35, 36, 0, 0, 0, 35, 66, 0, 0, 0, 36, 37, -1, 0, 0, 36, 41, -1, 0, 0, 36, 60, 0, 0, 0, 36, 66, 0, 0, 0, 36, 67, 0, 0, 0, 36, 68, 0, 0, 0, 36, 69, 0, 0, 0, 36, 70, 0, 0, 0, 37, 70, 1, 0, 0, 38, 71, 0, 0, 0, 38, 72, 0, 0, 0, 38, 73, 0, 0, 0, 39, 73, 0, 1, -1, 39, 74, 0, 0, 0, 39, 75, 0, 0, 0, 40, 62, 0, 1, 0, 41, 68, 1, 0, 0, 42, 64, 0, 1, 0, 43, 58, 1, 1, 0, 43, 76, 0, 0, 0, 43, 77, 0, 0, 0, 44, 47, 0, 0, 1, 45, 50, 0, 0, 1, 46, 53, -1, 0, 1, 46, 78, 0, 0, 0, 46, 79, 0, 0, 0, 47, 48, 0, 0, 0, 47, 77, 0, 0, -1, 48, 49, 0, 0, 0, 48, 80, 0, 0, 0, 49, 54, 0, 0, 0, 50, 51, 0, 0, 0, 50, 79, 0, 0, -1, 51, 52, 0, 0, 0, 51, 81, 0, 0, 0, 52, 57, 0, 0, 0, 53, 54, 0, 0, 0, 53, 55, 0, 0, 0, 53, 78, 1, 0, -1, 53, 79, 1, 0, -1, 53, 82, 0, 0, 0, 53, 83, 0, 0, 0, 53, 84, 0, 0, 0, 53, 85, 0, 0, 0, 53, 86, 0, 0, 0, 53, 87, 0, 0, 0, 54, 84, 0, 0, 0, 55, 56, 0, 0, 0, 55, 87, 0, 0, 0, 56, 61, 0, 0, 0, 57, 58, 0, 0, 0, 57, 88, 0, 0, 0, 58, 59, 0, 0, 0, 58, 76, -1, -1, 0, 58, 77, -1, -1, 0, 58, 88, 0, 0, 0, 58, 89, 0, 0, 0, 58, 90, 0, 0, 0, 58, 91, 0, 0, 0, 58, 92, 0, 0, 0, 58, 93, 0, 0, 0, 59, 60, 0, 0, 0, 59, 91, 0, 0, 0, 60, 69, 0, 0, 0, 61, 62, 0, 0, 0, 61, 94, 0, 0, 0, 62, 74, 0, -1, 0, 63, 65, 0, 0, 0, 63, 72, 0, 0, 0, 64, 65, 0, 0, 0, 64, 78, 0, -1, 0, 65, 95, 0, 0, 0, 66, 67, 0, 0, 0, 66, 75, 0, 0, 0, 67, 68, 0, 0, 0, 67, 96, 0, 0, 0, 68, 76, -1, 0, 0, 69, 70, 0, 0, 0, 69, 97, 0, 0, 0, 70, 71, -1, 0, 0, 71, 73, 0, 0, 0, 71, 98, 0, 0, 0, 72, 73, 0, 0, 0, 72, 99, 0, 0, 0, 73, 74, 0, -1, 1, 73, 75, 0, -1, 1, 73, 98, 0, 0, 0, 73, 99, 0, 0, 0, 73, 100, 0, 0, 0, 73, 101, 0, 0, 0, 73, 102, 0, 0, 0, 73, 103, 0, 0, 0, 74, 101, 0, 1, -1, 75, 103, 0, 1, -1, 76, 90, 1, 1, 0, 77, 93, 1, 1, 0, 78, 82, -1, 0, 1, 79, 85, -1, 0, 1, 80, 84, 0, 0, 0, 80, 93, 1, 1, -1, 80, 104, 0, 0, 0, 81, 85, -1, 0, 0, 81, 88, 0, 0, 0, 81, 105, 0, 0, 0, 82, 83, 0, 0, 0, 82, 95, 1, 1, -1, 83, 84, 0, 0, 0, 83, 106, 0, 0, 0, 85, 86, 0, 0, 0, 86, 87, 0, 0, 0, 86, 107, 0, 0, 0, 87, 94, 0, 0, 0, 88, 89, 0, 0, 0, 89, 90, 0, 0, 0, 89, 108, 0, 0, 0, 90, 96, 0, -1, 0, 91, 92, 0, 0, 0, 91, 97, 0, 0, 0, 92, 93, 0, 0, 0, 92, 109, 0, 0, 0, 94, 101, 0, 0, -1, 94, 110, 0, 0, 0, 95, 99, 0, 0, 0, 95, 111, 0, 0, 0, 96, 103, 0, 1, -1, 96, 112, 0, 0, 0, 97, 98, -1, 0, 0, 97, 113, 0, 0, 0, 98, 100, 0, 0, 0, 99, 102, 0, 0, 0, 100, 101, 0, 0, 0, 100, 114, 0, 0, 0, 102, 103, 0, 0, 0, 102, 115, 0, 0, 0, 104, 106, 0, 0, 0, 104, 109, 1, 1, -1, 104, 116, 0, 0, 0, 105, 107, -1, 0, 0, 105, 108, 0, 0, 0, 105, 116, -1, -1, 0, 106, 111, 1, 1, -1, 106, 116, 0, 0, 0, 107, 110, 0, 0, 0, 107, 116, 0, -1, 0, 108, 112, 0, -1, 0, 108, 116, -1, -1, 0, 109, 113, 0, 0, 0, 109, 116, -1, -1, 1, 110, 114, 0, 0, -1, 110, 116, 0, -1, 0, 111, 115, 0, 0, 0, 111, 116, -1, -1, 1, 112, 115, 0, 1, -1, 112, 116, -1, 0, 0, 113, 114, -1, 0, 0, 113, 116, -1, -1, 1, 114, 116, 0, -1, 1, 115, 116, -1, -1, 1) |
Spacegroup: Ia-3d
Parameters:
a | b | c | alpha | beta | gamma |
---|---|---|---|---|---|
8.57609 | 8.57609 | 8.57609 | 90.0 | 90.0 | 90.0 |
Vertex positions:
X-pos | Y-pos | Z-pos |
---|---|---|
0.17857 | 0.19433 | 0.34139 |
0.1468 | 0.25394 | 0.31801 |
0 | 1 | 0 |
0 | 0.25 | 0.375 |
Edge end points:
Spacegroup: Ia-3d
Parameters:
a | b | c | alpha | beta | gamma |
---|---|---|---|---|---|
6.72726 | 6.72726 | 6.72726 | 90.0 | 90.0 | 90.0 |
Vertex positions:
X-pos | Y-pos | Z-pos |
---|---|---|
0.13561 | 0.30423 | 0.17205 |
0.10303 | 0.26232 | 0.26855 |
0 | 1 | 0 |
0 | 0.25 | 0.375 |
Edge end points:
Image | h-net name | Orbifold symbol | Transitivity (Vert,Edge,Face) | Vertex Degree | 2D Vertex Symbol |
---|---|---|---|---|---|
hqc1894 | *246 | (4,5,2) | {4,4,12,4} | {5.3.3.5}{5.5.3.3}{3.3.3.3.3.3.3... |