s-net: sqc14517


 
Systre crystallographic geometry file (.cgd)

Links to this net in other databases

topcryst

Topological data

Vertices per primitive translational unit 144
Edges per primitive translational unit 288
Transitivity (vertex,edge)(3,6)
Vertex degrees {6,3,3}
Vertex coordination sequence [(6, 17, 35, 64, 112, 182, 261, 351, 459, 571), (3, 6, 15, 34, 64, 112, 182, 261, 351, 459), (3, 6, 15, 34, 64, 112, 182, 261, 351, 459)]
Wells’ vertex symbol [3.4^5.5^2.6^5.7^2, 3.4.5, 3.4.5]
Systre key (3, 1, 2, 0, 0, 0, 1, 3, 0, 0, 0, 1, 4, 0, 0, 0, 1, 5, 0, 0, 0, 1, 6, 0, 0, 0, 1, 7, 0, 0, 0, 2, 8, 0, 0, 0, 2, 9, 0, 0, 0, 2, 10, 0, 0, 0, 2, 11, 0, 0, 0, 2, 12, 0, 0, 0, 3, 8, 0, 0, 0, 3, 13, 0, 0, 0, 3, 14, 0, 0, 0, 3, 15, 0, 0, 0, 3, 16, 0, 0, 0, 4, 6, 0, 0, 0, 4, 14, 0, 0, 0, 5, 17, 0, 0, 0, 5, 18, 0, 0, 0, 5, 19, 0, 0, 0, 5, 20, 0, 0, 0, 5, 21, 0, 0, 0, 6, 22, 0, 0, 0, 7, 16, 0, 0, 0, 7, 18, 0, 0, 0, 7, 22, 0, 0, 0, 7, 23, 0, 0, 0, 7, 24, 0, 0, 0, 8, 25, 0, 0, 0, 8, 26, 0, 0, 0, 8, 27, 0, 0, 0, 8, 28, 0, 0, 0, 9, 10, 0, 0, 0, 9, 28, 0, 0, 0, 10, 29, 0, 0, 0, 11, 26, 0, 0, 0, 11, 29, 0, 0, 0, 11, 30, 0, 0, 0, 11, 31, 0, 0, 0, 11, 32, 0, 0, 0, 12, 32, 0, 0, 0, 12, 33, 0, 0, 0, 12, 34, 0, 0, 0, 12, 35, 0, 0, 0, 12, 36, 0, 0, 0, 13, 37, 0, 0, 0, 13, 38, 0, 0, 0, 13, 39, 0, 0, 0, 13, 40, 0, 0, 0, 13, 41, 0, 0, 0, 14, 15, 0, 0, 0, 15, 42, 0, 0, 0, 16, 41, 0, 0, 0, 16, 42, 0, 0, 0, 16, 43, 0, 0, 0, 16, 44, 0, 0, 0, 17, 30, 1, 0, 0, 17, 45, 0, 0, 0, 17, 46, 0, 0, 0, 17, 47, 0, 0, 0, 17, 48, 0, 0, 0, 18, 45, 0, 0, 0, 18, 49, 0, 0, 0, 18, 50, 0, 0, 0, 18, 51, 0, 0, 0, 19, 20, 0, 0, 0, 19, 47, 0, 0, 0, 20, 51, 0, 0, 0, 21, 33, 0, 0, 0, 21, 37, 0, 1, 0, 21, 48, 0, 0, 0, 21, 52, 0, 0, 0, 21, 53, 0, 0, 0, 22, 23, 0, 0, 0, 23, 43, 0, 0, 0, 24, 36, 0, 0, 1, 24, 44, 0, 0, 0, 24, 54, 0, 0, 0, 24, 55, 0, 0, 0, 24, 56, 0, 0, 0, 25, 57, 0, 0, 0, 25, 58, 0, 0, 0, 25, 59, 0, 0, 0, 25, 60, 0, 0, 0, 25, 61, 0, 0, 0, 26, 61, 0, 0, 0, 26, 62, 0, 0, 0, 26, 63, 0, 0, 0, 26, 64, 0, 0, 0, 27, 28, 0, 0, 0, 27, 63, 0, 0, 0, 29, 31, 0, 0, 0, 30, 62, 0, 0, 0, 30, 65, 0, 0, 0, 30, 66, 0, 0, 0, 30, 67, 0, 0, 0, 31, 64, 0, 0, 0, 32, 68, 0, 0, 0, 32, 69, 0, 0, 0, 32, 70, 0, 0, 0, 32, 71, 0, 0, 0, 33, 58, 0, 1, 0, 33, 72, 0, 0, 0, 33, 73, 0, 0, 0, 33, 74, 0, 0, 0, 34, 35, 0, 0, 0, 34, 75, 0, 0, 0, 35, 68, 0, 0, 0, 36, 70, 0, 0, 0, 36, 72, 0, 0, 0, 36, 75, 0, 0, 0, 36, 76, 0, 0, 0, 37, 58, 0, 0, 0, 37, 77, 0, 0, 0, 37, 78, 0, 0, 0, 37, 79, 0, 0, 0, 38, 62, 0, 0, 1, 38, 79, 0, 0, 0, 38, 80, 0, 0, 0, 38, 81, 0, 0, 0, 38, 82, 0, 0, 0, 39, 40, 0, 0, 0, 39, 80, 0, 0, 0, 40, 83, 0, 0, 0, 41, 82, 0, 0, 0, 41, 83, 0, 0, 0, 41, 84, 0, 0, 0, 41, 85, 0, 0, 0, 42, 43, 0, 0, 0, 44, 57, -1, 1, 1, 44, 86, 0, 0, 0, 44, 87, 0, 0, 0, 44, 88, 0, 0, 0, 45, 65, 1, 0, 0, 45, 89, 0, 0, 0, 45, 90, 0, 0, 0, 45, 91, 0, 0, 0, 46, 47, 0, 0, 0, 46, 90, 0, 0, 0, 48, 71, 1, 0, 0, 48, 79, 0, 1, 0, 48, 92, 0, 0, 0, 48, 93, 0, 0, 0, 49, 51, 0, 0, 0, 49, 91, 0, 0, 0, 50, 72, 0, 0, 1, 50, 85, 1, 0, 0, 50, 89, 0, 0, 0, 50, 94, 0, 0, 0, 50, 95, 0, 0, 0, 52, 53, 0, 0, 0, 52, 92, 0, 0, 0, 53, 77, 0, 1, 0, 54, 55, 0, 0, 0, 54, 86, 0, 0, 0, 55, 96, 0, 0, 0, 56, 65, 0, 1, 1, 56, 70, 0, 0, 1, 56, 88, 0, 0, 0, 56, 96, 0, 0, 0, 56, 97, 0, 0, 0, 57, 98, 0, 0, 0, 57, 99, 0, 0, 0, 57, 100, 0, 0, 0, 57, 101, 0, 0, 0, 58, 98, 0, 0, 0, 58, 102, 0, 0, 0, 58, 103, 0, 0, 0, 59, 60, 0, 0, 0, 59, 100, 0, 0, 0, 60, 104, 0, 0, 0, 61, 101, 0, 0, 0, 61, 104, 0, 0, 0, 61, 105, 0, 0, 0, 61, 106, 0, 0, 0, 62, 107, 0, 0, 0, 62, 108, 0, 0, 0, 62, 109, 0, 0, 0, 63, 64, 0, 0, 0, 65, 107, 0, 0, 0, 65, 110, 0, 0, 0, 65, 111, 0, 0, 0, 66, 67, 0, 0, 0, 66, 109, 0, 0, 0, 67, 111, 0, 0, 0, 68, 69, 0, 0, 0, 69, 112, 0, 0, 0, 70, 112, 0, 0, 0, 70, 113, 0, 0, 0, 70, 114, 0, 0, 0, 71, 105, -1, 1, 1, 71, 114, 0, 0, 0, 71, 115, 0, 0, 0, 71, 116, 0, 0, 0, 72, 98, 0, 1, 0, 72, 117, 0, 0, 0, 72, 118, 0, 0, 0, 73, 74, 0, 0, 0, 73, 118, 0, 0, 0, 74, 103, 0, 1, 0, 75, 76, 0, 0, 0, 76, 113, 0, 0, 0, 77, 78, 0, 0, 0, 78, 119, 0, 0, 0, 79, 105, 0, 0, 1, 79, 119, 0, 0, 0, 79, 120, 0, 0, 0, 80, 81, 0, 0, 0, 81, 121, 0, 0, 0, 82, 107, 0, 0, 1, 82, 121, 0, 0, 0, 82, 122, 0, 0, 0, 82, 123, 0, 0, 0, 83, 84, 0, 0, 0, 84, 122, 0, 0, 0, 85, 98, -1, 1, 1, 85, 123, 0, 0, 0, 85, 124, 0, 0, 0, 85, 125, 0, 0, 0, 86, 87, 0, 0, 0, 87, 126, 0, 0, 0, 88, 101, -1, 1, 1, 88, 107, 0, 1, 1, 88, 126, 0, 0, 0, 88, 127, 0, 0, 0, 89, 114, 1, -1, 0, 89, 123, 1, 0, 0, 89, 128, 0, 0, 0, 89, 129, 0, 0, 0, 90, 91, 0, 0, 0, 92, 93, 0, 0, 0, 93, 120, 0, 1, 0, 94, 95, 0, 0, 0, 94, 129, 0, 0, 0, 95, 125, 1, 0, 0, 96, 97, 0, 0, 0, 97, 127, 0, 0, 0, 98, 130, 0, 0, 0, 98, 131, 0, 0, 0, 99, 100, 0, 0, 0, 99, 132, 0, 0, 0, 101, 132, 0, 0, 0, 101, 133, 0, 0, 0, 101, 134, 0, 0, 0, 102, 103, 0, 0, 0, 102, 131, 0, 0, 0, 104, 106, 0, 0, 0, 105, 133, 0, 0, 0, 105, 135, 0, 0, 0, 105, 136, 0, 0, 0, 106, 134, 0, 0, 0, 107, 137, 0, 0, 0, 107, 138, 0, 0, 0, 108, 109, 0, 0, 0, 108, 137, 0, 0, 0, 110, 111, 0, 0, 0, 110, 138, 0, 0, 0, 112, 113, 0, 0, 0, 114, 133, -1, 1, 1, 114, 139, 0, 0, 0, 114, 140, 0, 0, 0, 115, 116, 0, 0, 0, 115, 139, 0, 0, 0, 116, 135, -1, 1, 1, 117, 118, 0, 0, 0, 117, 130, 0, 1, 0, 119, 120, 0, 0, 0, 121, 122, 0, 0, 0, 123, 133, -1, 0, 1, 123, 141, 0, 0, 0, 123, 142, 0, 0, 0, 124, 125, 0, 0, 0, 124, 142, 0, 0, 0, 126, 127, 0, 0, 0, 128, 129, 0, 0, 0, 128, 141, 1, 0, 0, 130, 131, 0, 0, 0, 132, 134, 0, 0, 0, 133, 143, 0, 0, 0, 133, 144, 0, 0, 0, 135, 136, 0, 0, 0, 136, 144, 0, 0, 0, 137, 138, 0, 0, 0, 139, 140, 0, 0, 0, 140, 143, -1, 1, 1, 141, 142, 0, 0, 0, 143, 144, 0, 0, 0)

Geometric data

Systre equilibrium placement (barycentric embedding) maximising unit cell volume

Spacegroup: Ia-3d

Parameters:

a b c alpha beta gamma
12.81415 12.81415 12.81415 90.0 90.0 90.0

Vertex positions:

X-pos Y-pos Z-pos
0.01236 0.17283 0.38721
0.01809 0.20767 0.37907
0.04587 0.24604 0.37093

Edge end points:

Systre coordinates favouring equal edge-lengths

Spacegroup: Ia-3d

Parameters:

a b c alpha beta gamma
5.35034 5.35034 5.35034 90.0 90.0 90.0

Vertex positions:

X-pos Y-pos Z-pos
0.08839 0.29731 0.31412
0.03249 0.03638 0.29817
0.06564 0.08604 0.38855

Edge end points:

Hyperbolic sources

h-nets with faithful topology

1 record listed.
Image h-net name Orbifold symbol Transitivity (Vert,Edge,Face) Vertex Degree 2D Vertex Symbol
Net details hqc1990 *246 (2,5,5) {6,3} {6.4.4.3.4.4}{4.8.3}

h-nets with edge collapse

No items to display.