s-net: sqc9722


 
Systre crystallographic geometry file (.cgd)

Links to this net in other databases

topcryst

Topological data

Vertices per primitive translational unit 14
Edges per primitive translational unit 40
Transitivity (vertex,edge)(4,4)
Vertex degrees {4,8,6,4}
Vertex coordination sequence [(4, 16, 36, 83, 144, 255, 320, 485, 570, 807), (8, 16, 56, 82, 204, 212, 434, 406, 752, 632), (6, 20, 38, 104, 134, 302, 292, 572, 502, 926), (4, 24, 36, 110, 140, 298, 292, 574, 508, 922)]
Wells’ vertex symbol [3^4.4^2, 3^4.4^6.5^4.6^6.7^4.8^4, 3^4.4^4.5^4.6^3, 4^4.6^2]
Systre key (3, 1, 2, 0, 0, 0, 1, 3, 0, 0, 0, 1, 4, 0, 0, 0, 1, 5, 0, 0, 0, 1, 6, 0, 0, 0, 1, 7, 0, 0, 0, 1, 8, 0, 0, 0, 1, 9, 0, 0, 0, 2, 3, 0, 0, 0, 2, 4, 0, 0, 0, 2, 10, 0, 0, 0, 3, 10, 0, 0, 0, 3, 11, 0, 0, 0, 3, 12, 0, 0, 0, 3, 13, 0, 0, 0, 4, 10, 0, 0, 0, 4, 11, 0, 1, 0, 4, 13, 1, 0, 0, 4, 14, 0, 0, 0, 5, 10, -1, 0, 0, 5, 11, 0, 0, 1, 5, 13, 0, 0, 0, 6, 10, 0, 1, 0, 6, 11, 0, 1, 0, 6, 13, 1, 0, 1, 7, 9, 0, 0, 0, 7, 10, -1, 1, 0, 7, 11, 0, 0, 1, 7, 12, 0, 0, 1, 7, 13, 0, 0, 1, 8, 9, 0, 0, 0, 8, 10, -1, 1, 0, 8, 11, 0, 1, 1, 8, 13, 1, 0, 1, 8, 14, 0, 0, 1, 9, 10, -1, 1, 0, 11, 12, 0, 0, 0, 11, 14, 0, -1, 0, 12, 13, 0, 0, 0, 13, 14, -1, 0, 0)

Geometric data

Systre equilibrium placement (barycentric embedding) maximising unit cell volume

Spacegroup: I4/mmm

Parameters:

a b c alpha beta gamma
3.44088 3.44088 3.05481 90.0 90.0 90.0

Vertex positions:

X-pos Y-pos Z-pos
0.18182 0.18182 0
0.25 0.25 0.25
0.77273 0 0
0.5 1 0.25

Edge end points:

Systre coordinates favouring equal edge-lengths

Spacegroup: I4/mmm

Parameters:

a b c alpha beta gamma
2.94697 2.94697 2.34714 90.0 90.0 90.0

Vertex positions:

X-pos Y-pos Z-pos
0.08145 0.08145 0
0.25 0.25 0.25
0.60131 0 0
0.5 1 0.25

Edge end points:

Hyperbolic sources

h-nets with faithful topology

1 record listed.
Image h-net name Orbifold symbol Transitivity (Vert,Edge,Face) Vertex Degree 2D Vertex Symbol
Net details hqc1575 *2224 (4,4,2) {4,8,6,4} {4.4.4.4}{4.3.3.4.4.3.3.4}{4.3.3...

h-nets with edge collapse

No items to display.