Systre crystallographic geometry file (.cgd) |
topcryst |
Vertices per primitive translational unit | 14 |
Edges per primitive translational unit | 42 |
Transitivity (vertex,edge) | (5,7) |
Vertex degrees | {12,4,8,12,4} |
Vertex coordination sequence | [(12, 32, 102, 158, 354, 446, 774, 880, 1362, 1454), (4, 20, 65, 143, 274, 440, 632, 908, 1132, 1540), (8, 36, 78, 216, 290, 578, 650, 1100, 1150, 1790), (12, 44, 138, 212, 432, 520, 894, 968, 1524, 1556), (4, 24, 72, 198, 274, 534, 624, 1038, 1114, 1710)] |
Wells’ vertex symbol | [3^12.4^18.5^24.6^12, 3^2.4^3.5, 3^4.4^8.5^4.6^10.7^2, 4^18.5^12.6^30.7^6, 4^4.6^2] |
Systre key | (3, 1, 2, 0, 0, 0, 1, 3, 0, 0, 0, 1, 4, 0, 0, 0, 1, 4, 0, 1, 0, 1, 5, 0, 0, 0, 1, 5, 1, 0, 0, 1, 6, 0, 0, 0, 1, 7, 0, 0, 0, 2, 4, 0, 0, 0, 2, 8, 0, 0, 0, 2, 9, 0, 0, 0, 3, 4, 0, 1, 0, 3, 10, 0, 0, 0, 3, 11, 0, 0, 0, 4, 6, 0, 0, 0, 4, 7, 0, -1, 0, 4, 8, 0, 0, 0, 4, 8, 1, 1, 1, 4, 10, 0, -1, 0, 4, 10, 0, 0, 1, 4, 12, 0, 0, 0, 4, 13, 0, 0, 0, 5, 8, 0, 1, 0, 5, 8, 0, 1, 1, 5, 9, -1, 0, 0, 5, 9, 0, 1, 1, 5, 10, -1, -1, 0, 5, 10, 0, 1, 1, 5, 11, -1, -1, 0, 5, 11, -1, 0, 0, 5, 14, 0, 0, 0, 5, 14, 0, 1, 1, 6, 10, 0, 0, 1, 6, 11, -1, -1, 0, 7, 8, 1, 2, 1, 7, 9, 0, 1, 1, 8, 12, 0, 0, 0, 8, 13, -1, -1, -1, 10, 12, 0, 1, 0, 10, 13, 0, 0, -1, 12, 14, 0, -1, 0, 13, 14, 1, 1, 1) |
Spacegroup: R-3
Parameters:
a | b | c | alpha | beta | gamma |
---|---|---|---|---|---|
3.73752 | 3.73752 | 2.84569 | 90.0 | 90.0 | 120.0 |
Vertex positions:
X-pos | Y-pos | Z-pos |
---|---|---|
0 | 0 | 0 |
0.04167 | 0.20833 | 0.08333 |
0 | 0.5 | 0.5 |
0 | 0 | 0.5 |
0 | 0.5 | 0 |
Edge end points:
Spacegroup: R-3
Parameters:
a | b | c | alpha | beta | gamma |
---|---|---|---|---|---|
2.2695 | 2.2695 | 3.22103 | 90.0 | 90.0 | 120.0 |
Vertex positions:
X-pos | Y-pos | Z-pos |
---|---|---|
0 | 0 | 0 |
0.1519 | 0.19787 | 0.41868 |
0 | 0.5 | 0.5 |
0 | 0 | 0.5 |
0 | 0.5 | 0 |
Edge end points:
Image | h-net name | Orbifold symbol | Transitivity (Vert,Edge,Face) | Vertex Degree | 2D Vertex Symbol |
---|---|---|---|---|---|
hqc2387 | *2626 | (5,6,2) | {12,4,8,12,4} | {3.3.3.3.3.3.3.3.3.3.3.3}{3.4.4.... |