U-tiling: UQC1099
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc1003 |
*22222 |
(2,4,3) |
{3,6} |
{4.8.6}{6.8.8.6.8.8} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
True
|
|
sqc2280
|
|
Fmmm |
69 |
orthorhombic |
{3,5} |
10 |
(2,4) |
G
|
False
|
|
sqc8716
|
|
Fddd |
70 |
orthorhombic |
{6,3,3} |
20 |
(3,5) |
D
|
False
|
|
sqc294
|
|
P4/mmm |
123 |
tetragonal |
{3,6} |
5 |
(2,3) |
Topological data
Vertex degrees | {6,3} |
2D vertex symbol | {4.8.6}{6.8.8.6.8.8} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<1.1:144:82 4 5 78 79 44 45 100 13 14 96 97 53 54 118 22 23 114 115 62 63 136 31 32 132 133 71 72 91 40 41 105 106 73 49 50 87 88 127 58 59 141 142 109 67 68 123 124 76 77 107 108 85 86 98 99 94 95 103 104 112 113 143 144 121 122 134 135 130 131 139 140,2 12 6 9 8 11 15 18 17 20 30 24 27 26 29 33 36 35 38 48 42 45 44 47 51 54 53 56 66 60 63 62 65 69 72 71 74 93 78 81 80 83 102 87 90 89 92 96 99 98 101 105 108 107 110 129 114 117 116 119 138 123 126 125 128 132 135 134 137 141 144 143,19 3 5 7 9 28 12 14 16 18 21 23 25 27 30 32 34 36 55 39 41 43 45 64 48 50 52 54 57 59 61 63 66 68 70 72 109 75 77 79 81 118 84 86 88 90 127 93 95 97 99 136 102 104 106 108 111 113 115 117 120 122 124 126 129 131 133 135 138 140 142 144:8 6 4 8 4 8 6 4 8 4 6 6,6 3 3 3 3 6 3 3 3 3 6 3 6 3 3 3 3 3 3 3> {(0, 62): 't1', (2, 135): 't2', (0, 45): 't3^-1', (0, 34): 't1^-1', (0, 133): 'tau3^-1*t1^-1*tau2', (0, 59): 'tau3^-1', (0, 9): 't2', (0, 23): 'tau2^-1', (0, 35): 't1^-1', (0, 122): 'tau2^-1', (0, 134): 'tau3^-1*t1^-1*tau2', (2, 117): 't3', (0, 60): 'tau3^-1', (1, 110): 't3^-1*tau1*t2', (0, 32): 'tau3', (1, 101): 'tau1', (0, 24): 'tau2^-1', (0, 142): 'tau3*t1*tau2^-1', (0, 123): 'tau2^-1', (0, 36): 't2^-1', (0, 61): 't1', (1, 119): 't3*tau1^-1*t2^-1', (0, 116): 'tau2*t1^-1*tau3^-1', (0, 33): 'tau3', (2, 108): 't3^-1', (0, 0): 't3', (1, 74): 'tau1', (2, 126): 't2^-1', }