Fddd

Number70
Symmetry Classorthorhombic
ChiralN

s-nets

816 records listed.
Image s-net name Other names Space group Space group number Symmetry class Vertex degree(s) Vertices per primitive unit cell Transitivity (Vertex, Edge)
Full image sqc182 neb Fddd 70 orthorhombic {4} 4 (1,2)
Full image sqc1801 Fddd 70 orthorhombic {8} 4 (1,3)
Full image sqc1878 Fddd 70 orthorhombic {8} 4 (1,3)
Full image sqc2045 Fddd 70 orthorhombic {4,4} 8 (2,3)
Full image sqc2076 Fddd 70 orthorhombic {4,4} 8 (2,3)
Full image sqc2309 Fddd 70 orthorhombic {12,3} 6 (2,4)
Full image sqc3364 Fddd 70 orthorhombic {6,4} 8 (2,3)
Full image sqc3562 Fddd 70 orthorhombic {6,4} 8 (2,3)
Full image sqc3566 Fddd 70 orthorhombic {6,4} 8 (2,3)
Full image sqc3571 Fddd 70 orthorhombic {6,4} 8 (2,3)
Full image sqc3763 Fddd 70 orthorhombic {6,4} 8 (2,3)
Full image sqc4016 Fddd 70 orthorhombic {3,16} 6 (2,5)
Full image sqc4773 Fddd 70 orthorhombic {12,3} 10 (2,5)
Full image sqc4916 Fddd 70 orthorhombic {8,4} 8 (2,4)
Full image sqc4921 Fddd 70 orthorhombic {8,4} 8 (2,4)
Full image sqc4962 Fddd 70 orthorhombic {8,4} 8 (2,4)
Full image sqc4969 Fddd 70 orthorhombic {8,4} 8 (2,4)
Full image sqc4978 Fddd 70 orthorhombic {8,4} 8 (2,4)
Full image sqc4988 Fddd 70 orthorhombic {6,6} 8 (2,4)
Full image sqc5020 Fddd 70 orthorhombic {8,4} 8 (2,4)
Full image sqc5067 Fddd 70 orthorhombic {8,4} 8 (2,4)
Full image sqc5095 Fddd 70 orthorhombic {6} 8 (1,4)
Full image sqc5141 Fddd 70 orthorhombic {8,4} 8 (2,4)
Full image sqc5142 Fddd 70 orthorhombic {8,4} 8 (2,4)
Full image sqc5144 Fddd 70 orthorhombic {6} 8 (1,4)
Full image sqc5162 Fddd 70 orthorhombic {6,6} 8 (2,4)
Full image sqc5165 Fddd 70 orthorhombic {6,6} 8 (2,4)
Full image sqc5166 Fddd 70 orthorhombic {6,6} 8 (2,4)
Full image sqc5173 Fddd 70 orthorhombic {6,6} 8 (2,4)
Full image sqc5174 Fddd 70 orthorhombic {6,6} 8 (2,4)
Full image sqc5175 Fddd 70 orthorhombic {3,6} 12 (2,4)
Full image sqc5190 Fddd 70 orthorhombic {3,6} 12 (2,4)
Full image sqc5192 Fddd 70 orthorhombic {3,6} 12 (2,4)
Full image sqc5193 Fddd 70 orthorhombic {3,6} 12 (2,4)
Full image sqc5239 Fddd 70 orthorhombic {4,4,4} 12 (3,4)
Full image sqc5273 Fddd 70 orthorhombic {4,4} 12 (2,4)
Full image sqc5277 Fddd 70 orthorhombic {4,4} 12 (2,4)
Full image sqc5278 Fddd 70 orthorhombic {4,4} 12 (2,4)
Full image sqc5282 Fddd 70 orthorhombic {4,4} 12 (2,4)
Full image sqc5283 Fddd 70 orthorhombic {4,4} 12 (2,4)
Full image sqc5298 Fddd 70 orthorhombic {4,4,4} 12 (3,4)
Full image sqc5331 Fddd 70 orthorhombic {3,6} 12 (2,4)
Full image sqc5332 Fddd 70 orthorhombic {3,6} 12 (2,4)
Full image sqc5354 Fddd 70 orthorhombic {8,4} 8 (2,4)
Full image sqc5361 Fddd 70 orthorhombic {6,6} 8 (2,4)
Full image sqc5368 Fddd 70 orthorhombic {3,6} 12 (2,4)
Full image sqc5370 Fddd 70 orthorhombic {3,6} 12 (2,4)
Full image sqc5371 Fddd 70 orthorhombic {3,6} 12 (2,4)
Full image sqc5379 Fddd 70 orthorhombic {3,6} 12 (2,4)
Full image sqc5522 Fddd 70 orthorhombic {4,4} 12 (2,4)
Full image sqc6342 Fddd 70 orthorhombic {10,4} 8 (2,4)
Full image sqc6343 Fddd 70 orthorhombic {10,4} 8 (2,4)
Full image sqc6345 Fddd 70 orthorhombic {10,4} 8 (2,4)
Full image sqc6348 Fddd 70 orthorhombic {8,6} 8 (2,5)
Full image sqc6349 Fddd 70 orthorhombic {8,3} 12 (2,5)
Full image sqc6358 Fddd 70 orthorhombic {3,8} 12 (2,5)
Full image sqc6387 Fddd 70 orthorhombic {10,4} 8 (2,4)
Full image sqc6407 Fddd 70 orthorhombic {8,6} 8 (2,5)
Full image sqc6466 Fddd 70 orthorhombic {10,4} 8 (2,4)
Full image sqc6517 Fddd 70 orthorhombic {8,6} 8 (2,5)
Full image sqc6518 Fddd 70 orthorhombic {8,6} 8 (2,5)
Full image sqc6519 Fddd 70 orthorhombic {3,8} 12 (2,5)
Full image sqc6520 Fddd 70 orthorhombic {3,8} 12 (2,5)
Full image sqc6521 Fddd 70 orthorhombic {3,8} 12 (2,5)
Full image sqc6528 Fddd 70 orthorhombic {3,8} 12 (2,5)
Full image sqc6541 Fddd 70 orthorhombic {8,6} 8 (2,5)
Full image sqc6543 Fddd 70 orthorhombic {4,6} 12 (2,5)
Full image sqc6560 Fddd 70 orthorhombic {4,6} 12 (2,5)
Full image sqc6561 Fddd 70 orthorhombic {4,6} 12 (2,5)
Full image sqc6563 Fddd 70 orthorhombic {6,4} 12 (2,5)
Full image sqc6574 Fddd 70 orthorhombic {5,4} 12 (2,4)
Full image sqc6579 Fddd 70 orthorhombic {5,4} 12 (2,4)
Full image sqc6585 Fddd 70 orthorhombic {5,4} 12 (2,4)
Full image sqc6586 Fddd 70 orthorhombic {5,4} 12 (2,4)
Full image sqc6607 Fddd 70 orthorhombic {4,6,4} 12 (3,4)
Full image sqc6643 Fddd 70 orthorhombic {4,6,4} 12 (3,4)
Full image sqc6648 Fddd 70 orthorhombic {4,6,4} 12 (3,4)
Full image sqc6659 Fddd 70 orthorhombic {4,3,4} 16 (3,4)
Full image sqc6660 Fddd 70 orthorhombic {4,3,4} 16 (3,4)
Full image sqc6661 Fddd 70 orthorhombic {4,3,4} 16 (3,4)
Full image sqc6677 Fddd 70 orthorhombic {8,3} 12 (2,5)
Full image sqc6693 Fddd 70 orthorhombic {6,4} 12 (2,5)
Full image sqc6694 Fddd 70 orthorhombic {4,6} 12 (2,5)
Full image sqc6703 Fddd 70 orthorhombic {5,4} 12 (2,4)
Full image sqc6710 Fddd 70 orthorhombic {4,3,4} 16 (3,4)
Full image sqc6720 Fddd 70 orthorhombic {8,3} 12 (2,5)
Full image sqc6727 Fddd 70 orthorhombic {3,8} 12 (2,5)
Full image sqc6728 Fddd 70 orthorhombic {3,8} 12 (2,5)
Full image sqc6734 Fddd 70 orthorhombic {4,6} 12 (2,5)
Full image sqc6735 Fddd 70 orthorhombic {4,6} 12 (2,5)
Full image sqc6743 Fddd 70 orthorhombic {4,6} 12 (2,5)
Full image sqc6746 Fddd 70 orthorhombic {4,6} 12 (2,5)
Full image sqc6793 Fddd 70 orthorhombic {4,6,4} 12 (3,4)
Full image sqc6794 Fddd 70 orthorhombic {4,6,4} 12 (3,4)
Full image sqc6924 Fddd 70 orthorhombic {3,4} 16 (2,5)
Full image sqc6949 Fddd 70 orthorhombic {3,4} 16 (2,5)
Full image sqc6956 Fddd 70 orthorhombic {3,4} 16 (2,5)
Full image sqc6957 Fddd 70 orthorhombic {3,4} 16 (2,5)
Full image sqc6959 Fddd 70 orthorhombic {3,4} 16 (2,5)
Full image sqc6961 Fddd 70 orthorhombic {4,3,4} 16 (3,4)