U-tiling: UQC1342
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc579 |
*2323 |
(2,4,4) |
{10,3} |
{3.4.4.4.4.3.4.4.4.4}{4.3.4} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc10774
|
|
P4232 |
208 |
cubic |
{10,3} |
18 |
(2,4) |
G
|
False
|
|
sqc10870
|
|
I213 |
199 |
cubic |
{10,3} |
18 |
(2,4) |
D
|
False
|
|
sqc10717
|
|
F-43m |
216 |
cubic |
{10,3} |
18 |
(2,4) |
Topological data
Vertex degrees | {10,3} |
2D vertex symbol | {3.4.4.4.4.3.4.4.4.4}{4.3.4} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<35.1:192:3 18 20 21 22 63 64 11 50 52 53 54 127 128 19 95 96 27 106 108 109 110 119 120 35 66 68 69 70 167 168 43 130 132 133 134 151 152 51 159 160 59 90 92 93 94 67 87 88 75 170 172 173 174 183 184 83 162 164 165 166 91 99 178 180 181 182 175 176 107 143 144 115 138 140 141 142 123 154 156 157 158 131 191 192 139 147 186 188 189 190 155 163 171 179 187,2 4 13 7 32 10 12 15 48 18 20 37 23 104 26 28 45 31 34 36 39 152 42 44 47 50 52 69 55 176 58 60 77 63 88 66 68 71 120 74 76 79 136 82 84 133 87 90 92 141 95 160 98 100 149 103 106 108 165 111 184 114 116 173 119 122 124 181 127 168 130 132 135 138 140 143 192 146 148 151 154 156 189 159 162 164 167 170 172 175 178 180 183 186 188 191,9 6 11 5 8 14 13 16 33 22 35 21 24 41 30 43 29 32 38 37 40 46 45 48 65 54 67 53 56 73 62 75 61 64 70 69 72 78 77 80 129 86 131 85 88 137 94 139 93 96 145 102 147 101 104 161 110 163 109 112 169 118 171 117 120 177 126 179 125 128 134 133 136 142 141 144 150 149 152 185 158 187 157 160 166 165 168 174 173 176 182 181 184 190 189 192:4 3 4 3 4 4 3 3 4 3 4 4 4 4 4 4 3 4 4 3 4 4 3 4 4 4,10 3 10 3 3 10 3 10 3 3 10 3 3 10 3 3 3 3> {(0, 182): 't2', (0, 190): 'tau1*t3^-1*tau2^-1', (2, 58): 'tau3', (0, 41): 'tau2^-1', (1, 87): 't1', (0, 31): 't1^-1', (2, 56): 'tau3', (0, 43): 'tau2^-1', (1, 79): 'tau3^-1*t1^-1', (0, 183): 't2', (0, 175): 't2^-1', (0, 45): 'tau2^-1', (0, 102): 't2', (0, 185): 'tau1', (0, 140): 'tau3', (1, 124): 'tau1', (0, 47): 't3', (0, 142): 'tau3*t1', (2, 162): 'tau2', (0, 188): 'tau1', (0, 189): 'tau1', (2, 160): 'tau2', (0, 147): 'tau1^-1', (1, 76): 'tau3^-1', (0, 137): 'tau3', (0, 191): 'tau1*t3^-1*tau2^-1', (1, 191): 't2^-1', (0, 30): 't1^-1', (0, 139): 'tau3', (2, 178): 'tau1^-1', (1, 164): 'tau2', (1, 111): 'tau2^-1*t3^-1*tau1', (0, 141): 'tau3', (2, 176): 'tau1^-1', (1, 95): 't2', (0, 44): 'tau2^-1', (0, 143): 'tau3*t1', (0, 46): 't3', (1, 127): 't3', }