I213

Number199
Symmetry Classcubic
ChiralY

s-nets

154 records listed.
Image s-net name Other names Space group Space group number Symmetry class Vertex degree(s) Vertices per primitive unit cell Transitivity (Vertex, Edge)
Full image sqc5416 I213 199 cubic {6,3} 10 (2,2)
Full image sqc7073 I213 199 cubic {9,6} 8 (2,3)
Full image sqc7279 I213 199 cubic {6,4,3} 14 (3,3)
Full image sqc7280 I213 199 cubic {6,6} 10 (2,3)
Full image sqc7318 I213 199 cubic {5} 12 (1,3)
Full image sqc7346 I213 199 cubic {4,3} 16 (2,3)
Full image sqc7389 I213 199 cubic {3,4} 18 (2,3)
Full image sqc8584 I213 199 cubic {3,10} 10 (2,3)
Full image sqc8970 I213 199 cubic {4,8} 12 (2,3)
Full image sqc8976 I213 199 cubic {8,3,3} 14 (3,3)
Full image sqc8995 I213 199 cubic {3,6} 18 (2,3)
Full image sqc9015 I213 199 cubic {4,6} 16 (2,4)
Full image sqc9049 I213 199 cubic {6,4} 16 (2,3)
Full image sqc9060 I213 199 cubic {4,6,3} 16 (3,3)
Full image sqc9065 bch I213 199 cubic {6,3,3} 20 (3,3)
Full image sqc9238 I213 199 cubic {3,4,3} 22 (3,3)
Full image sqc9990 I213 199 cubic {9,4} 16 (2,4)
Full image sqc9991 I213 199 cubic {9,3,3} 20 (3,4)
Full image sqc9992 I213 199 cubic {9,4} 16 (2,4)
Full image sqc9993 I213 199 cubic {9,3,3} 20 (3,4)
Full image sqc9999 I213 199 cubic {6,8,3} 14 (3,4)
Full image sqc10008 I213 199 cubic {3,8} 18 (2,4)
Full image sqc10011 I213 199 cubic {3,8} 18 (2,4)
Full image sqc10019 I213 199 cubic {5,6} 16 (2,4)
Full image sqc10021 I213 199 cubic {4,6,3} 20 (3,4)
Full image sqc10022 I213 199 cubic {3,4,6} 22 (3,4)
Full image sqc10023 I213 199 cubic {6,3,6} 20 (3,4)
Full image sqc10027 I213 199 cubic {3,6} 16 (2,4)
Full image sqc10034 I213 199 cubic {3,6,3} 22 (3,4)
Full image sqc10038 I213 199 cubic {3,6,3} 22 (3,4)
Full image sqc10044 I213 199 cubic {5,4} 18 (2,4)
Full image sqc10056 I213 199 cubic {5,4} 18 (2,4)
Full image sqc10077 I213 199 cubic {4,3} 24 (2,4)
Full image sqc10091 I213 199 cubic {4,4,3} 22 (3,4)
Full image sqc10741 I213 199 cubic {12,3,3} 20 (3,5)
Full image sqc10742 I213 199 cubic {12,4} 16 (2,5)
Full image sqc10870 I213 199 cubic {10,3} 18 (2,4)
Full image sqc10944 I213 199 cubic {9,3,6} 20 (3,5)
Full image sqc10949 I213 199 cubic {5,9} 16 (2,5)
Full image sqc10950 I213 199 cubic {9,4,3} 20 (3,5)
Full image sqc10987 I213 199 cubic {4,8} 18 (2,4)
Full image sqc11020 I213 199 cubic {6,6} 16 (2,4)
Full image sqc11023 I213 199 cubic {5,6} 18 (2,4)
Full image sqc11037 I213 199 cubic {4,6,6} 20 (3,5)
Full image sqc11080 I213 199 cubic {3,3,6,3} 26 (4,4)
Full image sqc11086 I213 199 cubic {3,5} 24 (2,5)
Full image sqc11098 I213 199 cubic {5,3} 24 (2,5)
Full image sqc11109 I213 199 cubic {3,5} 24 (2,5)
Full image sqc11112 I213 199 cubic {3,5} 24 (2,5)
Full image sqc11168 I213 199 cubic {4,4,3,3} 26 (4,4)
Full image sqc11221 I213 199 cubic {4,4,3,3} 26 (4,4)
Full image sqc11223 I213 199 cubic {3,4,3} 28 (3,5)
Full image sqc11228 I213 199 cubic {3,4,3} 28 (3,5)
Full image sqc11238 I213 199 cubic {4,3,4,3} 28 (4,4)
Full image sqc11599 I213 199 cubic {12,9,4} 14 (3,5)
Full image sqc11607 I213 199 cubic {3,12} 18 (2,5)
Full image sqc11622 I213 199 cubic {9,6} 16 (2,5)
Full image sqc11624 I213 199 cubic {9,3,3} 28 (3,5)
Full image sqc11630 I213 199 cubic {5,8} 18 (2,5)
Full image sqc11631 I213 199 cubic {5,8} 18 (2,5)
Full image sqc11635 I213 199 cubic {3,8,3,3} 26 (4,5)
Full image sqc11639 I213 199 cubic {7,4} 18 (2,5)
Full image sqc11644 I213 199 cubic {7,6} 16 (2,5)
Full image sqc11651 I213 199 cubic {4,6,6} 22 (3,5)
Full image sqc11655 I213 199 cubic {6,6,3,3} 26 (4,5)
Full image sqc11656 I213 199 cubic {6,4,4,3} 26 (4,5)
Full image sqc11658 I213 199 cubic {6,4,4,3} 26 (4,5)
Full image sqc11659 I213 199 cubic {6,3,3,3} 32 (4,5)
Full image sqc11660 I213 199 cubic {6,3,3,3} 32 (4,5)
Full image sqc11662 I213 199 cubic {6,3} 24 (2,5)
Full image sqc11677 I213 199 cubic {4,6,3,3} 26 (4,5)
Full image sqc11680 I213 199 cubic {5,4} 24 (2,5)
Full image sqc11685 I213 199 cubic {5,4} 24 (2,5)
Full image sqc11691 I213 199 cubic {4,5} 24 (2,5)
Full image sqc11692 I213 199 cubic {5,4} 24 (2,5)
Full image sqc11702 I213 199 cubic {4,3,3,3} 32 (4,5)
Full image sqc11711 I213 199 cubic {4,3,3,3} 32 (4,5)
Full image sqc11717 I213 199 cubic {3,3,4,3} 34 (4,5)
Full image sqc11718 I213 199 cubic {3,3,4,3} 34 (4,5)
Full image sqc11725 I213 199 cubic {3,3,3} 36 (3,5)
Full image sqc12057 I213 199 cubic {4,12} 18 (2,5)
Full image sqc12122 I213 199 cubic {3,4,9,4} 26 (4,5)
Full image sqc12126 I213 199 cubic {3,9,6,4} 26 (4,5)
Full image sqc12137 I213 199 cubic {3,8,6,6} 20 (4,5)
Full image sqc12138 I213 199 cubic {3,8,3,6} 26 (4,5)
Full image sqc12142 I213 199 cubic {8,3,3} 30 (3,5)
Full image sqc12146 I213 199 cubic {8,3,3} 30 (3,5)
Full image sqc12152 I213 199 cubic {7,3} 24 (2,6)
Full image sqc12158 I213 199 cubic {3,7} 24 (2,6)
Full image sqc12170 I213 199 cubic {4,6} 24 (2,5)
Full image sqc12189 I213 199 cubic {6,4,4} 28 (3,5)
Full image sqc12190 I213 199 cubic {4,3,6,3} 32 (4,6)
Full image sqc12191 I213 199 cubic {6,4,3,3} 32 (4,6)
Full image sqc12192 I213 199 cubic {6,3,4,3} 32 (4,6)
Full image sqc12196 I213 199 cubic {4,6} 24 (2,5)
Full image sqc12207 I213 199 cubic {3,6,4,6} 28 (4,5)
Full image sqc12211 I213 199 cubic {3,6,3,4,3} 32 (5,5)
Full image sqc12228 I213 199 cubic {5,5} 24 (2,6)
Full image sqc12239 I213 199 cubic {4,4,4} 30 (3,5)
Full image sqc12247 I213 199 cubic {4,3,3} 36 (3,5)