U-tiling: UQC1445
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc925 |
*2323 |
(2,5,4) |
{5,4} |
{3.4.4.4.4}{4.6.6.4} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc11694
|
|
P4232 |
208 |
cubic |
{4,5} |
24 |
(2,5) |
G
|
False
|
|
sqc11691
|
|
I213 |
199 |
cubic |
{4,5} |
24 |
(2,5) |
D
|
False
|
|
sqc11682
|
|
F-43m |
216 |
cubic |
{4,5} |
24 |
(2,5) |
Topological data
Vertex degrees | {5,4} |
2D vertex symbol | {3.4.4.4.4}{4.6.6.4} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<42.1:216:10 20 21 5 24 25 71 72 56 57 14 60 61 143 144 37 23 107 108 46 119 120 32 123 124 134 135 74 75 41 78 79 188 189 146 147 50 150 151 170 171 73 59 179 180 82 101 102 68 105 106 77 98 99 191 192 86 195 196 206 207 145 182 183 95 186 187 154 104 163 200 201 113 204 205 197 198 181 122 161 162 190 155 156 131 159 160 199 173 174 140 177 178 149 215 216 158 209 210 167 213 214 208 176 185 194 203 212,2 4 6 8 36 11 13 15 17 54 20 22 24 26 117 29 31 33 35 38 40 42 44 171 47 49 51 53 56 58 60 62 198 65 67 69 71 99 74 76 78 80 135 83 85 87 89 153 92 94 96 98 101 103 105 107 180 110 112 114 116 119 121 123 125 207 128 130 132 134 137 139 141 143 189 146 148 150 152 155 157 159 161 216 164 166 168 170 173 175 177 179 182 184 186 188 191 193 195 197 200 202 204 206 209 211 213 215,28 3 31 32 7 9 46 12 49 50 16 18 109 21 112 113 25 27 30 34 36 163 39 166 167 43 45 48 52 54 190 57 193 194 61 63 91 66 94 95 70 72 127 75 130 131 79 81 145 84 148 149 88 90 93 97 99 172 102 175 176 106 108 111 115 117 199 120 202 203 124 126 129 133 135 181 138 184 185 142 144 147 151 153 208 156 211 212 160 162 165 169 171 174 178 180 183 187 189 192 196 198 201 205 207 210 214 216:6 4 4 3 4 4 3 3 6 4 4 4 4 4 4 6 4 4 4 3 4 6 4 4 4 4,4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5> {(0, 146): 'tau2', (2, 144): 't1*tau3', (1, 188): 't3^-1', (2, 94): 't1', (0, 154): 'tau3', (0, 63): 'tau3', (1, 215): 't2^-1', (0, 180): 'tau2', (2, 103): 't2', (0, 151): 'tau2*t3*tau1^-1', (0, 163): 'tau1^-1', (1, 125): 'tau2^-1*t3^-1*tau1', (2, 157): 't2', (1, 98): 't1', (0, 159): 'tau3', (2, 63): 't1^-1', (0, 152): 'tau2*t3*tau1^-1', (0, 197): 't2^-1', (0, 164): 'tau1^-1', (0, 135): 'tau1', (2, 85): 'tau3^-1*t1^-1', (1, 89): 'tau3^-1*t1^-1', (2, 121): 'tau2^-1*t3^-1*tau1', (0, 149): 'tau2', (0, 161): 'tau3*t1', (0, 205): 't2', (2, 93): 't1', (0, 169): 't3^-1', (2, 184): 't3^-1', (2, 135): 't3', (2, 102): 't2', (0, 150): 'tau2', (0, 133): 't1', (0, 206): 't2', (2, 156): 't2', (0, 158): 'tau3', (0, 170): 't3^-1', (2, 99): 't2', (1, 107): 't2', (0, 155): 'tau3', (0, 196): 't2^-1', (2, 183): 't3^-1', (0, 167): 'tau1^-1', (0, 134): 't1', (2, 117): 'tau2^-1*t3^-1*tau1', (2, 84): 'tau3^-1*t1^-1', (2, 153): 't2', (2, 120): 'tau2^-1*t3^-1*tau1', (0, 160): 'tau3*t1', (0, 145): 'tau2', (0, 168): 'tau1^-1', }