U-tiling: UQC1590
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc1263 |
*22222 |
(2,6,4) |
{6,4} |
{4.4.4.4.4.4}{4.4.4.4} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
True
|
|
sqc2482
|
|
P4/mmm |
123 |
tetragonal |
{4,5} |
8 |
(2,5) |
G
|
False
|
|
sqc9364
|
|
I4122 |
98 |
tetragonal |
{4,6} |
16 |
(2,6) |
D
|
False
|
|
sqc3202
|
|
P4222 |
93 |
tetragonal |
{4,6} |
8 |
(2,6) |
Topological data
Vertex degrees | {6,4} |
2D vertex symbol | {4.4.4.4.4.4}{4.4.4.4} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<49.4:160:11 22 23 5 26 27 48 49 100 32 33 15 36 37 58 59 80 31 25 68 69 120 35 88 89 110 71 62 63 45 66 67 140 91 82 83 55 86 87 130 101 65 160 102 103 75 106 107 128 129 111 85 150 112 113 95 116 117 138 139 105 148 149 115 158 159 131 142 143 125 146 147 152 153 135 156 157 151 145 155,2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140 142 144 146 148 150 152 154 156 158 160,21 3 24 25 7 9 30 31 13 34 35 17 19 40 23 27 29 33 37 39 61 43 64 65 47 49 70 81 53 84 85 57 59 90 63 67 69 101 73 104 105 77 79 110 83 87 89 111 93 114 115 97 99 120 103 107 109 113 117 119 141 123 144 145 127 129 150 151 133 154 155 137 139 160 143 147 149 153 157 159:4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4,4 6 4 6 4 6 4 6 4 6 4 6 4 6 4 6> {(0, 29): 't1^-1', (2, 53): 't2*tau3^-1', (2, 20): 't1^-1', (0, 111): 'tau3^-1*t2', (2, 149): 't1*tau3*t2^-1', (0, 30): 't1', (2, 50): 't2*tau3^-1', (0, 151): 't1^-1*tau3^-1*t2', (2, 4): 't1', (0, 101): 'tau2*t3', (2, 124): 't2*tau3^-1*t1^-1', (0, 115): 'tau3^-1*t2', (0, 126): 't3^-1*tau2^-1', (0, 32): 't1', (2, 133): 't3*tau2', (2, 63): 'tau2^-1*t3^-1', (0, 152): 't1^-1*tau3^-1*t2', (0, 135): 't2^-1*tau3*t1', (0, 102): 'tau2*t3', (2, 154): 'tau2^-1*t3^-1', (0, 40): 't3', (0, 149): 't1', (0, 116): 'tau3^-1*t2', (2, 159): 'tau2^-1*t3^-1', (0, 37): 't1', (0, 110): 'tau3^-1', (2, 60): 'tau2^-1*t3^-1', (0, 157): 't1^-1', (2, 49): 't3*tau2', (0, 150): 't1^-1*tau3^-1*t2*tau1*t3^-1*tau2^-1', (2, 3): 't1', (2, 54): 't2*tau3^-1', (2, 123): 't2*tau3^-1*t1^-1', (0, 38): 't1', (0, 158): 't1^-1', (2, 44): 't3*tau2', (0, 141): 'tau2*t3', (0, 35): 't1', (2, 29): 't1^-1', (2, 150): 'tau2^-1*t3^-1', (0, 60): 'tau2^-1', (0, 105): 'tau2*t3', (0, 31): 't1', (2, 120): 't2*tau3^-1*t1^-1', (0, 142): 'tau2*t3', (0, 36): 't1', (0, 145): 'tau2*t3', (0, 112): 'tau3^-1*t2', (2, 59): 't2*tau3^-1', (0, 156): 't1^-1*tau3^-1*t2', (0, 50): 't2', (0, 106): 'tau2*t3', (0, 120): 'tau1^-1', }