h-net: hqc1263


Topological data

Orbifold symbol*22222
Transitivity (vertex, edge, ring)(2,6,4)
Vertex degrees{6,4}
2D vertex symbol {4.4.4.4.4.4}{4.4.4.4}
Delaney-Dress Symbol <1263.2:10:1 2 3 4 5 7 8 9 10,2 4 6 8 10,1 3 5 6 7 9 10:4 4 4 4,6 4>
Dual net hqc1438

Derived s-nets

s-nets with faithful topology

25 records listed.
Image s-net name Other names Space group Space group number Symmetry class Vertex degree(s) Vertices per primitive unit cell Transitivity (Vertex, Edge)
Full image sqc374 Pmmm 47 orthorhombic {6,4} 4 (2,6)
Full image sqc3471 Fmmm 69 orthorhombic {6,4} 8 (2,6)
Full image sqc9459 P4/mmm 123 tetragonal {4,6} 16 (2,6)
Full image sqc9535 Cmma 67 orthorhombic {4,6} 16 (2,9)
Full image sqc9364 I4122 98 tetragonal {4,6} 16 (2,6)
Full image sqc9365 I4122 98 tetragonal {4,6} 16 (2,6)
Full image sqc9452 I4122 98 tetragonal {4,6} 16 (2,6)
Full image sqc9458 I4122 98 tetragonal {4,6} 16 (2,6)
Full image sqc9490 Fddd 70 orthorhombic {4,6} 16 (2,6)
Full image sqc9530 I4122 98 tetragonal {4,6} 16 (2,6)
Full image sqc9534 C2/c 15 monoclinic {4,4,6,6} 16 (4,10)
Full image sqc9576 Fddd 70 orthorhombic {4,6} 16 (2,6)
Full image sqc9583 Fddd 70 orthorhombic {4,6} 16 (2,6)
Full image sqc9584 Fddd 70 orthorhombic {4,6} 16 (2,6)
Full image sqc9639 Fddd 70 orthorhombic {4,6} 16 (2,6)
Full image sqc404 Pmmm 47 orthorhombic {4,6} 4 (2,6)
Full image sqc460 Pmmm 47 orthorhombic {4,6} 4 (2,6)
Full image sqc3202 P4222 93 tetragonal {4,6} 8 (2,6)
Full image sqc3209 P4222 93 tetragonal {6,4} 8 (2,6)
Full image sqc3443 P4222 93 tetragonal {4,6} 8 (2,6)
Full image sqc3452 P4222 93 tetragonal {4,6} 8 (2,6)
Full image sqc3472 Cmma 67 orthorhombic {4,6} 8 (2,6)
Full image sqc3531 Cmma 67 orthorhombic {6,4} 8 (2,6)
Full image sqc3547 P4222 93 tetragonal {4,6} 8 (2,6)
Full image sqc9670 Imma 74 orthorhombic {4,6} 16 (2,9)

s-nets with edge collapse


Derived U-tilings

11 records listed.
Image U-tiling name PGD Subgroup Transitivity (Vert,Edge,Face) Vertex Degree Vertex Symbol P net G net D net
Tiling details UQC1589 *22222a (2,6,4) {6,4} {4.4.4.4.4.4}{4.4.4.4} Snet sqc7453 Snet sqc9365 Snet sqc3209
Tiling details UQC1590 *22222a (2,6,4) {6,4} {4.4.4.4.4.4}{4.4.4.4} Snet sqc2482 Snet sqc9364 Snet sqc3202
Tiling details UQC1591 *22222b (2,6,4) {6,4} {4.4.4.4.4.4}{4.4.4.4} Snet sqc2644 Snet sqc9639 Snet sqc460
Tiling details UQC1592 *22222b (2,6,4) {6,4} {4.4.4.4.4.4}{4.4.4.4} Snet sqc374 Snet sqc9576 Snet sqc3472
Tiling details UQC1593 *22222b (2,6,4) {6,4} {4.4.4.4.4.4}{4.4.4.4} Snet sqc3471 Snet sqc9584 Snet sqc374
Tiling details UQC1594 *22222a (2,6,4) {6,4} {4.4.4.4.4.4}{4.4.4.4} Snet sqc7845 Snet sqc9452 Snet sqc3443
Tiling details UQC1595 *22222b (2,6,4) {6,4} {4.4.4.4.4.4}{4.4.4.4} Snet sqc2015 Snet sqc9490 Snet sqc404
Tiling details UQC1596 *22222b (2,6,4) {6,4} {4.4.4.4.4.4}{4.4.4.4} Snet sqc374 Snet sqc9583 Snet sqc3531
Tiling details UQC1597 *22222a (2,6,4) {6,4} {4.4.4.4.4.4}{4.4.4.4} Snet sqc9459 Snet sqc9458 Snet sqc3547
Tiling details UQC1598 *22222a (2,6,4) {6,4} {4.4.4.4.4.4}{4.4.4.4} Snet sqc9096 Snet sqc9530 Snet sqc3452
Tiling details UQC3261 *222222a (2,9,8) {6,4} {4.4.4.4.4.4}{4.4.4.4} Snet sqc9535 Snet sqc9534 Snet sqc9670

Symmetry-lowered hyperbolic tilings