U-tiling: UQC1751
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc1308 |
*22222 |
(2,5,4) |
{7,3} |
{4.4.4.4.4.4.4}{4.4.4} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
True
|
|
sqc9036
|
|
P4/mmm |
123 |
tetragonal |
{6,3} |
16 |
(2,5) |
G
|
False
|
|
sqc9518
|
|
I4122 |
98 |
tetragonal |
{3,7} |
16 |
(2,6) |
D
|
False
|
|
sqc3449
|
|
P4222 |
93 |
tetragonal |
{3,7} |
8 |
(2,5) |
Topological data
Vertex degrees | {7,3} |
2D vertex symbol | {4.4.4.4.4.4.4}{4.4.4} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<55.4:160:11 4 5 16 17 28 29 50 14 15 38 39 60 31 24 25 36 37 70 34 35 90 71 44 45 76 77 68 69 91 54 55 96 97 88 89 101 64 65 106 107 74 75 108 109 130 111 84 85 116 117 94 95 118 119 140 104 105 150 114 115 160 131 124 125 136 137 148 149 134 135 158 159 151 144 145 156 157 154 155,2 23 6 95 8 10 12 33 16 75 18 20 22 26 115 28 30 32 36 105 38 40 42 63 46 135 48 50 52 83 56 125 58 60 62 66 155 68 70 72 103 76 78 80 82 86 145 88 90 92 113 96 98 100 102 106 108 110 112 116 118 120 122 143 126 128 130 132 153 136 138 140 142 146 148 150 152 156 158 160,21 3 5 7 9 100 31 13 15 17 19 80 23 25 27 29 120 33 35 37 39 110 61 43 45 47 49 140 81 53 55 57 59 130 63 65 67 69 160 101 73 75 77 79 83 85 87 89 150 111 93 95 97 99 103 105 107 109 113 115 117 119 141 123 125 127 129 151 133 135 137 139 143 145 147 149 153 155 157 159:4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4,3 7 3 7 7 7 3 7 3 7 7 3 7 3 3 3> {(2, 89): 't1^-1', (0, 117): 'tau3^-1*t2', (1, 114): 't1', (1, 122): 't2*tau3^-1*t1^-1', (0, 30): 't1', (2, 50): 't2*tau3^-1', (0, 118): 'tau3^-1*t2', (0, 130): 'tau1', (0, 56): 't2', (0, 39): 't1', (1, 152): 'tau2^-1*t3^-1', (0, 115): 'tau3^-1', (0, 159): 't1^-1', (1, 62): 'tau2^-1*t3^-1', (1, 84): 't1^-1', (0, 135): 'tau1', (0, 55): 't2', (0, 40): 't3', (0, 116): 'tau3^-1', (0, 37): 't1', (0, 110): 'tau3^-1', (2, 60): 'tau2^-1*t3^-1', (0, 157): 't1^-1*tau3^-1*t2', (0, 136): 'tau1', (0, 107): 'tau2*t3', (0, 45): 't3', (0, 150): 't1^-1*tau3^-1*t2*tau1*t3^-1*tau2^-1', (0, 38): 't1', (0, 147): 'tau2*t3', (0, 158): 't1^-1*tau3^-1*t2', (1, 82): 'tau3*t2^-1', (0, 35): 't1', (0, 108): 'tau2*t3', (0, 46): 't3', (2, 29): 't1^-1', (2, 150): 'tau2^-1*t3^-1', (2, 0): 't1', (0, 60): 'tau2^-1', (0, 105): 'tau2', (2, 120): 't2*tau3^-1*t1^-1', (0, 148): 'tau2*t3', (0, 155): 't1^-1*tau3^-1*t2*tau1*t3^-1*tau2^-1', (0, 36): 't1', (1, 22): 't1^-1', (0, 156): 't1^-1*tau3^-1*t2*tau1*t3^-1*tau2^-1', (0, 50): 't2', (0, 106): 'tau2', }