h-net: hqc1308


Topological data

Orbifold symbol*22222
Transitivity (vertex, edge, ring)(2,5,4)
Vertex degrees{7,3}
2D vertex symbol {4.4.4.4.4.4.4}{4.4.4}
Delaney-Dress Symbol <1308.2:10:1 2 3 4 5 7 9 10,2 4 6 10 8 9,1 3 5 8 9 10:4 4 4 4,7 3>
Dual net hqc1483

Derived s-nets

s-nets with faithful topology

22 records listed.
Image s-net name Other names Space group Space group number Symmetry class Vertex degree(s) Vertices per primitive unit cell Transitivity (Vertex, Edge)
Full image sqc3466 Fmmm 69 orthorhombic {3,7} 8 (2,5)
Full image sqc9640 P4/mmm 123 tetragonal {3,7} 16 (2,5)
Full image sqc9363 I4122 98 tetragonal {3,7} 16 (2,6)
Full image sqc9373 I4122 98 tetragonal {3,7} 16 (2,6)
Full image sqc9451 I4122 98 tetragonal {3,7} 16 (2,6)
Full image sqc9472 Fddd 70 orthorhombic {3,7} 16 (2,6)
Full image sqc9498 Fddd 70 orthorhombic {3,7} 16 (2,6)
Full image sqc9518 I4122 98 tetragonal {3,7} 16 (2,6)
Full image sqc9638 Fddd 70 orthorhombic {3,7} 16 (2,6)
Full image sqc9650 I4122 98 tetragonal {3,7} 16 (2,6)
Full image sqc9652 Fddd 70 orthorhombic {3,7} 16 (2,6)
Full image sqc9656 Fddd 70 orthorhombic {3,7} 16 (2,6)
Full image sqc373 Pmmm 47 orthorhombic {3,7} 4 (2,5)
Full image sqc403 Pmmm 47 orthorhombic {3,7} 4 (2,5)
Full image sqc417 Pmmm 47 orthorhombic {3,7} 4 (2,5)
Full image sqc3166 P4222 93 tetragonal {3,7} 8 (2,5)
Full image sqc3208 P4222 93 tetragonal {7,3} 8 (2,5)
Full image sqc3449 P4222 93 tetragonal {3,7} 8 (2,5)
Full image sqc3470 Cmma 67 orthorhombic {7,3} 8 (2,5)
Full image sqc3529 Cmma 67 orthorhombic {7,3} 8 (2,5)
Full image sqc3721 P4222 93 tetragonal {7,3} 8 (2,5)
Full image sqc3723 P4222 93 tetragonal {7,3} 8 (2,5)

s-nets with edge collapse


Derived U-tilings

10 records listed.
Image U-tiling name PGD Subgroup Transitivity (Vert,Edge,Face) Vertex Degree Vertex Symbol P net G net D net
Tiling details UQC1742 *22222a (2,5,4) {7,3} {4.4.4.4.4.4.4}{4.4.4} No s‑net Snet sqc9373 Snet sqc3208
Tiling details UQC1743 *22222a (2,5,4) {7,3} {4.4.4.4.4.4.4}{4.4.4} Snet sqc2448 Snet sqc9363 Snet sqc3166
Tiling details UQC1744 *22222a (2,5,4) {7,3} {4.4.4.4.4.4.4}{4.4.4} No s‑net Snet sqc9451 Snet sqc3721
Tiling details UQC1745 *22222b (2,5,4) {7,3} {4.4.4.4.4.4.4}{4.4.4} Snet sqc3466 Snet sqc9652 Snet sqc373
Tiling details UQC1746 *22222b (2,5,4) {7,3} {4.4.4.4.4.4.4}{4.4.4} Snet sqc373 Snet sqc9472 Snet sqc3470
Tiling details UQC1747 *22222b (2,5,4) {7,3} {4.4.4.4.4.4.4}{4.4.4} No s‑net Snet sqc9498 Snet sqc403
Tiling details UQC1748 *22222b (2,5,4) {7,3} {4.4.4.4.4.4.4}{4.4.4} Snet sqc2643 Snet sqc9638 Snet sqc417
Tiling details UQC1749 *22222b (2,5,4) {7,3} {4.4.4.4.4.4.4}{4.4.4} Snet sqc373 Snet sqc9656 Snet sqc3529
Tiling details UQC1750 *22222a (2,5,4) {7,3} {4.4.4.4.4.4.4}{4.4.4} Snet sqc9640 Snet sqc9650 Snet sqc3723
Tiling details UQC1751 *22222a (2,5,4) {7,3} {4.4.4.4.4.4.4}{4.4.4} Snet sqc9036 Snet sqc9518 Snet sqc3449

Symmetry-lowered hyperbolic tilings