Orbifold symbol | *22222 |
Transitivity (vertex, edge, ring) | (2,5,4) |
Vertex degrees | {7,3} |
2D vertex symbol | {4.4.4.4.4.4.4}{4.4.4} |
Delaney-Dress Symbol | <1308.2:10:1 2 3 4 5 7 9 10,2 4 6 10 8 9,1 3 5 8 9 10:4 4 4 4,7 3> |
Dual net | hqc1483 |
Image | s-net name | Other names | Space group | Space group number | Symmetry class | Vertex degree(s) | Vertices per primitive unit cell | Transitivity (Vertex, Edge) |
---|---|---|---|---|---|---|---|---|
sqc3466 | Fmmm | 69 | orthorhombic | {3,7} | 8 | (2,5) | ||
sqc9640 | P4/mmm | 123 | tetragonal | {3,7} | 16 | (2,5) | ||
sqc9363 | I4122 | 98 | tetragonal | {3,7} | 16 | (2,6) | ||
sqc9373 | I4122 | 98 | tetragonal | {3,7} | 16 | (2,6) | ||
sqc9451 | I4122 | 98 | tetragonal | {3,7} | 16 | (2,6) | ||
sqc9472 | Fddd | 70 | orthorhombic | {3,7} | 16 | (2,6) | ||
sqc9498 | Fddd | 70 | orthorhombic | {3,7} | 16 | (2,6) | ||
sqc9518 | I4122 | 98 | tetragonal | {3,7} | 16 | (2,6) | ||
sqc9638 | Fddd | 70 | orthorhombic | {3,7} | 16 | (2,6) | ||
sqc9650 | I4122 | 98 | tetragonal | {3,7} | 16 | (2,6) | ||
sqc9652 | Fddd | 70 | orthorhombic | {3,7} | 16 | (2,6) | ||
sqc9656 | Fddd | 70 | orthorhombic | {3,7} | 16 | (2,6) | ||
sqc373 | Pmmm | 47 | orthorhombic | {3,7} | 4 | (2,5) | ||
sqc403 | Pmmm | 47 | orthorhombic | {3,7} | 4 | (2,5) | ||
sqc417 | Pmmm | 47 | orthorhombic | {3,7} | 4 | (2,5) | ||
sqc3166 | P4222 | 93 | tetragonal | {3,7} | 8 | (2,5) | ||
sqc3208 | P4222 | 93 | tetragonal | {7,3} | 8 | (2,5) | ||
sqc3449 | P4222 | 93 | tetragonal | {3,7} | 8 | (2,5) | ||
sqc3470 | Cmma | 67 | orthorhombic | {7,3} | 8 | (2,5) | ||
sqc3529 | Cmma | 67 | orthorhombic | {7,3} | 8 | (2,5) | ||
sqc3721 | P4222 | 93 | tetragonal | {7,3} | 8 | (2,5) | ||
sqc3723 | P4222 | 93 | tetragonal | {7,3} | 8 | (2,5) |
Image | U-tiling name | PGD Subgroup | Transitivity (Vert,Edge,Face) | Vertex Degree | Vertex Symbol | P net | G net | D net |
---|---|---|---|---|---|---|---|---|
UQC1742 | *22222a | (2,5,4) | {7,3} | {4.4.4.4.4.4.4}{4.4.4} | No s‑net | sqc9373 | sqc3208 | |
UQC1743 | *22222a | (2,5,4) | {7,3} | {4.4.4.4.4.4.4}{4.4.4} | sqc2448 | sqc9363 | sqc3166 | |
UQC1744 | *22222a | (2,5,4) | {7,3} | {4.4.4.4.4.4.4}{4.4.4} | No s‑net | sqc9451 | sqc3721 | |
UQC1745 | *22222b | (2,5,4) | {7,3} | {4.4.4.4.4.4.4}{4.4.4} | sqc3466 | sqc9652 | sqc373 | |
UQC1746 | *22222b | (2,5,4) | {7,3} | {4.4.4.4.4.4.4}{4.4.4} | sqc373 | sqc9472 | sqc3470 | |
UQC1747 | *22222b | (2,5,4) | {7,3} | {4.4.4.4.4.4.4}{4.4.4} | No s‑net | sqc9498 | sqc403 | |
UQC1748 | *22222b | (2,5,4) | {7,3} | {4.4.4.4.4.4.4}{4.4.4} | sqc2643 | sqc9638 | sqc417 | |
UQC1749 | *22222b | (2,5,4) | {7,3} | {4.4.4.4.4.4.4}{4.4.4} | sqc373 | sqc9656 | sqc3529 | |
UQC1750 | *22222a | (2,5,4) | {7,3} | {4.4.4.4.4.4.4}{4.4.4} | sqc9640 | sqc9650 | sqc3723 | |
UQC1751 | *22222a | (2,5,4) | {7,3} | {4.4.4.4.4.4.4}{4.4.4} | sqc9036 | sqc9518 | sqc3449 |