U-tiling: UQC1780
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
 |
hqc1342 |
*22222 |
(2,5,4) |
{5,10} |
{4.3.3.3.4}{3.3.4.4.3.3.3.4.4.3} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
True
|
|
sqc8268
|
|
P4/mmm |
123 |
tetragonal |
{5,7} |
12 |
(2,5) |
G
|
False
|
|
sqc9356
|
|
I4122 |
98 |
tetragonal |
{5,10} |
12 |
(2,6) |
D
|
False
|
|
sqc3100
|
|
P4222 |
93 |
tetragonal |
{5,10} |
6 |
(2,5) |
Topological data
Vertex degrees | {5,10} |
2D vertex symbol | {4.3.3.3.4}{3.3.4.4.3.3.3.4.4.3} |
Dual tiling |  |
D-symbol
Genus-3 version with t-tau cuts labelled
<57.4:160:11 22 23 6 7 28 29 100 32 33 16 17 38 39 80 31 26 27 120 36 37 110 71 62 63 46 47 68 69 140 91 82 83 56 57 88 89 130 101 66 67 160 102 103 76 77 108 109 111 86 87 150 112 113 96 97 118 119 106 107 116 117 131 142 143 126 127 148 149 152 153 136 137 158 159 151 146 147 156 157,2 4 25 26 8 10 12 14 35 36 18 20 22 24 28 30 32 34 38 40 42 44 65 66 48 50 52 54 85 86 58 60 62 64 68 70 72 74 105 106 78 80 82 84 88 90 92 94 115 116 98 100 102 104 108 110 112 114 118 120 122 124 145 146 128 130 132 134 155 156 138 140 142 144 148 150 152 154 158 160,21 3 5 7 9 50 31 13 15 17 19 60 23 25 27 29 70 33 35 37 39 90 61 43 45 47 49 81 53 55 57 59 63 65 67 69 101 73 75 77 79 130 83 85 87 89 111 93 95 97 99 140 103 105 107 109 150 113 115 117 119 160 141 123 125 127 129 151 133 135 137 139 143 145 147 149 153 155 157 159:4 3 3 4 3 3 4 4 3 3 4 4 3 3 4 3 3 3 3 4 3 3 3 3,5 10 5 10 5 5 5 10 5 10 5 5> {(0, 29): 't1^-1', (1, 124): 't2*tau3^-1*t1^-1', (2, 20): 't1^-1', (1, 154): 'tau2^-1*t3^-1', (0, 111): 'tau3^-1*t2', (1, 64): 'tau2^-1*t3^-1', (0, 48): 't3*tau2', (0, 30): 't1', (2, 50): 't2*tau3^-1', (0, 151): 't1^-1*tau3^-1*t2', (0, 130): 'tau1', (1, 125): 't3^-1*tau2^-1', (0, 101): 'tau2*t3', (0, 27): 't1^-1', (0, 32): 't1', (0, 102): 'tau2*t3', (0, 47): 't3*tau2', (0, 152): 't1^-1*tau3^-1*t2', (1, 84): 'tau3*t2^-1', (1, 35): 't1', (0, 28): 't1^-1', (0, 40): 't3', (0, 149): 't1', (1, 155): 't1^-1*tau3^-1*t2', (2, 39): 't1', (1, 115): 'tau3^-1*t2', (0, 110): 'tau3^-1', (2, 60): 'tau2^-1*t3^-1', (0, 157): 'tau2^-1*t3^-1', (0, 150): 't1^-1*tau3^-1*t2*tau1*t3^-1*tau2^-1', (0, 147): 't1*tau3*t2^-1', (0, 158): 'tau2^-1*t3^-1', (0, 141): 'tau2*t3', (2, 150): 'tau2^-1*t3^-1', (1, 24): 't1^-1', (0, 60): 'tau2^-1', (0, 31): 't1', (2, 120): 't2*tau3^-1*t1^-1', (0, 148): 't1*tau3*t2^-1', (0, 57): 't2*tau3^-1', (0, 142): 'tau2*t3', (0, 112): 'tau3^-1*t2', (0, 50): 't2', (1, 105): 'tau2*t3', (2, 119): 't1', (0, 58): 't2*tau3^-1', }