U-tiling: UQC1782
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc1342 |
*22222 |
(2,5,4) |
{5,10} |
{4.3.3.3.4}{3.3.4.4.3.3.3.4.4.3} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
True
|
|
sqc9275
|
|
P4/mmm |
123 |
tetragonal |
{5,9} |
12 |
(2,5) |
G
|
False
|
|
sqc9393
|
|
I4122 |
98 |
tetragonal |
{5,10} |
12 |
(2,6) |
D
|
False
|
|
sqc3138
|
|
P4222 |
93 |
tetragonal |
{5,10} |
6 |
(2,5) |
Topological data
Vertex degrees | {5,10} |
2D vertex symbol | {4.3.3.3.4}{3.3.4.4.3.3.3.4.4.3} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<57.5:160:21 42 43 6 7 18 19 30 31 52 53 16 17 40 62 63 26 27 38 39 82 83 36 37 61 46 47 78 79 70 81 56 57 98 99 90 66 67 108 109 101 122 123 76 77 110 86 87 118 119 111 132 133 96 97 120 142 143 106 107 152 153 116 117 141 126 127 138 139 150 151 136 137 160 146 147 158 159 156 157,2 4 15 46 8 10 12 14 56 18 20 22 24 35 66 28 30 32 34 86 38 40 42 44 75 48 50 52 54 95 58 60 62 64 105 68 70 72 74 126 78 80 82 84 115 88 90 92 94 136 98 100 102 104 146 108 110 112 114 156 118 120 122 124 135 128 130 132 134 138 140 142 144 155 148 150 152 154 158 160,11 3 5 7 9 100 13 15 17 19 80 31 23 25 27 29 120 33 35 37 39 110 71 43 45 47 49 140 91 53 55 57 59 130 101 63 65 67 69 160 73 75 77 79 111 83 85 87 89 150 93 95 97 99 103 105 107 109 113 115 117 119 131 123 125 127 129 133 135 137 139 151 143 145 147 149 153 155 157 159:4 3 3 4 4 3 3 3 3 3 4 3 4 3 4 3 3 4 3 3 3 3 4 3,5 10 10 5 10 10 5 5 5 5 5 5> {(1, 34): 't1', (0, 29): 't1^-1', (1, 124): 'tau1^-1', (2, 89): 't1^-1', (0, 117): 'tau3^-1', (1, 114): 'tau3^-1', (0, 140): 'tau2*t3', (0, 48): 't3', (0, 137): 'tau1', (0, 30): 't1', (2, 50): 't2', (0, 151): 't1^-1', (1, 154): 't1^-1*tau3^-1*t2*tau1*t3^-1*tau2^-1', (0, 118): 'tau3^-1', (2, 40): 't3', (1, 54): 't2', (0, 159): 'tau2^-1*t3^-1', (0, 138): 'tau1', (0, 32): 't1', (0, 47): 't3', (2, 30): 't1', (0, 149): 't1*tau3*t2^-1', (1, 115): 't1', (0, 37): 't1', (0, 110): 'tau3^-1*t2', (2, 60): 'tau2^-1', (0, 157): 't1^-1*tau3^-1*t2*tau1*t3^-1*tau2^-1', (0, 107): 'tau2', (1, 104): 'tau2', (0, 150): 't1^-1*tau3^-1*t2', (0, 59): 't2*tau3^-1', (0, 100): 'tau2*t3', (0, 38): 't1', (2, 110): 'tau3^-1', (0, 158): 't1^-1*tau3^-1*t2*tau1*t3^-1*tau2^-1', (0, 108): 'tau2', (2, 29): 't1^-1', (0, 49): 't3*tau2', (1, 85): 't1^-1', (0, 31): 't1', (2, 120): 'tau1^-1', (2, 140): 'tau2*t3*tau1^-1*t2^-1*tau3*t1', (0, 57): 't2', (0, 112): 't1', (1, 74): 't3^-1', (0, 58): 't2', }