U-tiling: UQC1912
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc109 |
*2244 |
(1,3,3) |
{5} |
{4.8.4.4.8} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc465
|
|
Pmmm |
47 |
orthorhombic |
{5,5} |
4 |
(2,5) |
G
|
False
|
|
sqc3589
|
|
C2/c |
15 |
monoclinic |
{5,5} |
8 |
(2,6) |
D
|
False
|
|
sqc3584
|
|
Imma |
74 |
orthorhombic |
{5,5} |
8 |
(2,5) |
Topological data
Vertex degrees | {5,5} |
2D vertex symbol | {4.8.4.8.4}{8.4.4.8.4} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<68.1:80:21 42 43 6 7 58 59 50 31 62 63 16 17 78 79 70 72 73 26 27 68 69 80 52 53 36 37 48 49 60 71 46 47 61 56 57 66 67 76 77,2 4 15 8 27 10 12 14 18 37 20 22 24 35 28 30 32 34 38 40 42 44 65 48 77 50 52 54 75 58 67 60 62 64 68 70 72 74 78 80,11 3 5 7 9 30 13 15 17 19 40 31 23 25 27 29 33 35 37 39 61 43 45 47 49 80 71 53 55 57 59 70 63 65 67 69 73 75 77 79:4 8 4 4 4 8 4 4,5 5 5 5 5 5 5 5> {(0, 51): 't3^-1*tau2^-1', (0, 41): 't3*tau2', (0, 18): 't2', (0, 62): 't2*tau3^-1', (0, 22): 'tau3^-1*t2', (1, 64): 'tau1^-1', (0, 48): 't3', (0, 30): 't1', (2, 50): 'tau1^-1', (0, 42): 't3*tau2', (0, 27): 't2^-1', (0, 60): 't2*tau3^-1*t1^-1*tau2*t3', (0, 20): 't1', (0, 32): 'tau2*t3', (0, 57): 't3^-1', (0, 47): 't3', (0, 17): 't2', (0, 61): 't2*tau3^-1', (0, 28): 't2^-1', (0, 40): 't3*tau2*t1^-1*tau3^-1*t2', (0, 21): 'tau3^-1*t2', (1, 74): 'tau1', (2, 60): 'tau1^-1', (0, 58): 't3^-1', }