# Pmmm

Number47
Symmetry Classorthorhombic
ChiralN

# s-nets

833 records listed.
Image s-net name Other names Space group Space group number Symmetry class Vertex degree(s) Vertices per primitive unit cell Transitivity (Vertex, Edge)
sqc2 Pmmm 47 orthorhombic {8} 1 (1,3)
sqc9 Pmmm 47 orthorhombic {4,6} 2 (2,4)
sqc10 fsg Pmmm 47 orthorhombic {4,6} 2 (2,4)
sqc16 Pmmm 47 orthorhombic {4,8} 2 (2,4)
sqc17 Pmmm 47 orthorhombic {8,4} 2 (2,4)
sqc18 Pmmm 47 orthorhombic {8,4} 2 (2,4)
sqc20 Pmmm 47 orthorhombic {4,8} 2 (2,5)
sqc21 Pmmm 47 orthorhombic {8,4} 2 (2,3)
sqc24 Pmmm 47 orthorhombic {6} 2 (1,4)
sqc25 Pmmm 47 orthorhombic {6,6} 2 (2,3)
sqc27 Pmmm 47 orthorhombic {6,3} 3 (2,3)
sqc28 Pmmm 47 orthorhombic {4,4,4} 3 (3,4)
sqc30 cdz Pmmm 47 orthorhombic {4,4} 3 (2,4)
sqc31 Pmmm 47 orthorhombic {4,4} 3 (2,4)
sqc40 Pmmm 47 orthorhombic {10,4} 2 (2,5)
sqc41 Pmmm 47 orthorhombic {4,10} 2 (2,5)
sqc42 Pmmm 47 orthorhombic {10,4} 2 (2,3)
sqc45 Pmmm 47 orthorhombic {8,6} 2 (2,4)
sqc46 seb Pmmm 47 orthorhombic {6,8} 2 (2,4)
sqc47 Pmmm 47 orthorhombic {6,8} 2 (2,4)
sqc48 Pmmm 47 orthorhombic {3,8} 3 (2,4)
sqc50 Pmmm 47 orthorhombic {3,8} 3 (2,4)
sqc52 Pmmm 47 orthorhombic {6,8} 2 (2,5)
sqc53 Pmmm 47 orthorhombic {4,4,6} 3 (3,5)
sqc54 Pmmm 47 orthorhombic {4,4,6} 3 (3,5)
sqc55 Pmmm 47 orthorhombic {6,4} 3 (2,5)
sqc57 Pmmm 47 orthorhombic {4,6} 3 (2,5)
sqc62 Pmmm 47 orthorhombic {4,4,6} 3 (3,5)
sqc63 Pmmm 47 orthorhombic {6,4} 3 (2,4)
sqc65 Pmmm 47 orthorhombic {4,5} 3 (2,3)
sqc67 Pmmm 47 orthorhombic {4,4,6} 3 (3,3)
sqc69 Pmmm 47 orthorhombic {4,4,3} 4 (3,3)
sqc72 Pmmm 47 orthorhombic {4,4,6} 3 (3,3)
sqc73 Pmmm 47 orthorhombic {5,4} 3 (2,3)
sqc75 Pmmm 47 orthorhombic {10,3} 3 (2,4)
sqc76 Pmmm 47 orthorhombic {4,8} 3 (2,5)
sqc77 Pmmm 47 orthorhombic {10,6} 2 (2,4)
sqc78 Pmmm 47 orthorhombic {4,4,8} 3 (3,5)
sqc79 Pmmm 47 orthorhombic {4,12} 2 (2,5)
sqc80 Pmmm 47 orthorhombic {12,4} 2 (2,4)
sqc81 Pmmm 47 orthorhombic {4,12} 2 (2,4)
sqc82 Pmmm 47 orthorhombic {4,12} 2 (2,4)
sqc84 Pmmm 47 orthorhombic {6,10} 2 (2,4)
sqc85 Pmmm 47 orthorhombic {6,10} 2 (2,4)
sqc86 Pmmm 47 orthorhombic {10,6} 2 (2,4)
sqc87 Pmmm 47 orthorhombic {10,3} 3 (2,4)
sqc88 Pmmm 47 orthorhombic {8,4,4} 3 (3,5)
sqc89 Pmmm 47 orthorhombic {3,10} 3 (2,4)
sqc91 Pmmm 47 orthorhombic {8,4,4} 3 (3,5)
sqc92 Pmmm 47 orthorhombic {8,4} 3 (2,5)
sqc93 Pmmm 47 orthorhombic {8,4} 3 (2,5)
sqc99 Pmmm 47 orthorhombic {10,6} 2 (2,5)
sqc102 Pmmm 47 orthorhombic {10,3} 3 (2,5)
sqc104 Pmmm 47 orthorhombic {8} 2 (1,5)
sqc105 Pmmm 47 orthorhombic {8,8} 2 (2,5)
sqc107 Pmmm 47 orthorhombic {4,8} 3 (2,5)
sqc109 Pmmm 47 orthorhombic {4,8} 3 (2,5)
sqc112 Pmmm 47 orthorhombic {4,6} 3 (2,5)
sqc114 Pmmm 47 orthorhombic {6,4} 3 (2,5)
sqc115 Pmmm 47 orthorhombic {8,4,4} 3 (3,4)
sqc116 Pmmm 47 orthorhombic {8,4,4} 3 (3,4)
sqc118 Pmmm 47 orthorhombic {6,6,4} 3 (3,4)
sqc119 Pmmm 47 orthorhombic {6,6,4} 3 (3,4)
sqc122 Pmmm 47 orthorhombic {4,6} 3 (2,5)
sqc123 Pmmm 47 orthorhombic {4,6} 3 (2,4)
sqc126 Pmmm 47 orthorhombic {5,6} 3 (2,4)
sqc127 Pmmm 47 orthorhombic {6,5} 3 (2,4)
sqc128 Pmmm 47 orthorhombic {6,5} 3 (2,4)
sqc129 Pmmm 47 orthorhombic {3,4,6} 4 (3,4)
sqc130 Pmmm 47 orthorhombic {3,4,6} 4 (3,4)
sqc131 Pmmm 47 orthorhombic {4,3,6} 4 (3,4)
sqc134 btv Pmmm 47 orthorhombic {5,6} 3 (2,4)
sqc136 Pmmm 47 orthorhombic {5,6} 3 (2,4)
sqc137 Pmmm 47 orthorhombic {5,6} 3 (2,4)
sqc138 Pmmm 47 orthorhombic {5,3} 4 (2,4)
sqc139 Pmmm 47 orthorhombic {8,4,4} 3 (3,5)
sqc140 Pmmm 47 orthorhombic {4,8,4} 3 (3,4)
sqc142 Pmmm 47 orthorhombic {4,4,4,4} 4 (4,5)
sqc143 Pmmm 47 orthorhombic {6,4,6} 3 (3,4)
sqc144 Pmmm 47 orthorhombic {3,4,6} 4 (3,4)
sqc146 Pmmm 47 orthorhombic {4,4,4} 4 (3,5)
sqc147 Pmmm 47 orthorhombic {4,4,4} 4 (3,5)
sqc148 Pmmm 47 orthorhombic {4,4,4} 4 (3,5)
sqc149 Pmmm 47 orthorhombic {4,4,4} 4 (3,5)
sqc151 Pmmm 47 orthorhombic {6,4} 3 (2,5)
sqc152 Pmmm 47 orthorhombic {6,4} 3 (2,5)
sqc153 Pmmm 47 orthorhombic {5,3} 4 (2,4)
sqc154 Pmmm 47 orthorhombic {4,4,4} 4 (3,5)
sqc156 Pmmm 47 orthorhombic {4,4} 4 (2,5)
sqc158 Pmmm 47 orthorhombic {4,4,4} 4 (3,5)
sqc159 Pmmm 47 orthorhombic {4,4,4} 4 (3,5)
sqc160 Pmmm 47 orthorhombic {4,4,4} 4 (3,4)
sqc161 Pmmm 47 orthorhombic {4,4,4} 4 (3,4)
sqc162 Pmmm 47 orthorhombic {3,4,6} 4 (3,4)
sqc163 Pmmm 47 orthorhombic {3,3,4} 5 (3,4)
sqc164 Pmmm 47 orthorhombic {3,3,4} 5 (3,4)
sqc171 Pmmm 47 orthorhombic {6,6,4} 3 (3,4)
sqc172 Pmmm 47 orthorhombic {6,6,4} 3 (3,4)
sqc175 Pmmm 47 orthorhombic {4,6} 3 (2,4)
sqc177 Pmmm 47 orthorhombic {5,6} 3 (2,4)