U-tiling: UQC1940
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc1625 |
*22222 |
(2,6,4) |
{8,3} |
{4.4.3.4.4.3.4.4}{3.4.4} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc10208
|
|
P4/mmm |
123 |
tetragonal |
{3,8} |
16 |
(2,6) |
G
|
False
|
|
sqc10211
|
|
I4122 |
98 |
tetragonal |
{3,8} |
16 |
(2,7) |
D
|
False
|
|
sqc4367
|
|
P4222 |
93 |
tetragonal |
{8,3} |
8 |
(2,6) |
Topological data
Vertex degrees | {8,3} |
2D vertex symbol | {4.4.3.4.4.3.4.4}{3.4.4} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<61.3:176:23 4 5 28 106 107 53 54 33 34 15 16 39 84 85 64 65 44 26 27 128 129 75 76 37 38 117 118 97 98 67 48 49 72 150 151 77 89 59 60 94 139 140 99 70 71 172 173 111 81 82 116 141 142 121 92 93 161 162 122 103 104 127 152 153 132 114 115 163 164 125 126 174 175 155 136 137 160 165 166 147 148 171 176 158 159 169 170,2 102 6 7 9 11 13 80 17 18 20 22 24 124 28 29 31 33 35 113 39 40 42 44 46 146 50 51 53 55 57 135 61 62 64 66 68 168 72 73 75 77 79 83 84 86 88 90 157 94 95 97 99 101 105 106 108 110 112 116 117 119 121 123 127 128 130 132 134 138 139 141 143 145 149 150 152 154 156 160 161 163 165 167 171 172 174 176,100 3 5 17 8 10 22 78 14 16 19 21 122 25 27 39 30 32 44 111 36 38 41 43 144 47 49 83 52 54 88 133 58 60 105 63 65 110 166 69 71 116 74 76 121 80 82 85 87 155 91 93 127 96 98 132 102 104 107 109 113 115 118 120 124 126 129 131 135 137 149 140 142 154 146 148 151 153 157 159 171 162 164 176 168 170 173 175:4 3 4 4 4 3 4 4 3 4 3 4 4 3 4 3 3 4 4 3 4 4 4 4,3 8 3 3 8 3 3 8 3 8 3 8 3 8 8 8> {(0, 29): 't1^-1', (2, 120): 'tau2', (0, 60): 't2*tau3^-1', (0, 41): 't1', (2, 148): 'tau1', (1, 90): 't1^-1', (2, 142): 'tau1^-1', (2, 49): 't3', (1, 123): 't1', (0, 43): 't1', (0, 129): 't1', (2, 154): 't1', (0, 55): 't2*tau3^-1', (2, 38): 't1', (2, 43): 't1', (0, 22): 't1^-1', (0, 131): 'tau3^-1*t2', (2, 164): 'tau2*t3*tau1^-1*t2^-1*tau3*t1', (0, 175): 't1^-1*tau3^-1*t2', (2, 131): 'tau3^-1', (0, 42): 't1', (2, 170): 't1^-1*tau3^-1*t2*tau1*t3^-1*tau2^-1', (0, 164): 'tau2*t3', (0, 154): 't1*tau3*t2^-1', (2, 54): 't3', (0, 28): 't1^-1', (0, 160): 't1', (2, 121): 't1', (0, 161): 't1', (0, 170): 'tau2^-1*t3^-1', (0, 87): 't3^-1*tau2^-1', (0, 159): 't1*tau3*t2^-1', (0, 44): 't3*tau2', (2, 109): 't2^-1', (2, 126): 'tau3^-1', (0, 165): 'tau2^-1*t3^-1', (0, 174): 't1^-1', (0, 27): 't1^-1', (2, 115): 'tau2', (0, 49): 't3*tau2', (2, 60): 't2', }