h-net: hqc1625


Topological data

Orbifold symbol*22222
Transitivity (vertex, edge, ring)(2,6,4)
Vertex degrees{8,3}
2D vertex symbol {4.4.3.4.4.3.4.4}{3.4.4}
Delaney-Dress Symbol <1625.2:11:1 2 3 4 5 7 9 10 11,2 4 6 7 10 11,1 3 5 8 9 10 11:4 4 3 4,8 3>
Dual net hqc1762

Derived s-nets

s-nets with faithful topology

22 records listed.
Image s-net name Other names Space group Space group number Symmetry class Vertex degree(s) Vertices per primitive unit cell Transitivity (Vertex, Edge)
Full image sqc559 Pmmm 47 orthorhombic {3,8} 4 (2,6)
Full image sqc4239 Fmmm 69 orthorhombic {8,3} 8 (2,6)
Full image sqc10208 P4/mmm 123 tetragonal {3,8} 16 (2,6)
Full image sqc10124 I4122 98 tetragonal {3,8} 16 (2,7)
Full image sqc10137 I4122 98 tetragonal {3,8} 16 (2,7)
Full image sqc10211 I4122 98 tetragonal {3,8} 16 (2,7)
Full image sqc10231 I4122 98 tetragonal {3,8} 16 (2,7)
Full image sqc10235 I4122 98 tetragonal {3,8} 16 (2,7)
Full image sqc10257 Fddd 70 orthorhombic {3,8} 16 (2,7)
Full image sqc10258 Fddd 70 orthorhombic {3,8} 16 (2,7)
Full image sqc10264 Fddd 70 orthorhombic {3,8} 16 (2,7)
Full image sqc10408 Fddd 70 orthorhombic {3,8} 16 (2,7)
Full image sqc10411 Fddd 70 orthorhombic {3,8} 16 (2,7)
Full image sqc672 Pmmm 47 orthorhombic {3,8} 4 (2,6)
Full image sqc4203 P4222 93 tetragonal {8,3} 8 (2,6)
Full image sqc4269 P4222 93 tetragonal {3,8} 8 (2,6)
Full image sqc4331 Cmma 67 orthorhombic {3,8} 8 (2,6)
Full image sqc4367 P4222 93 tetragonal {8,3} 8 (2,6)
Full image sqc4378 Cmma 67 orthorhombic {8,3} 8 (2,6)
Full image sqc14543 Pmmm 47 orthorhombic {3,8} 4 (2,6)
Full image sqc14607 P4222 93 tetragonal {3,8} 8 (2,6)
Full image sqc14608 P4222 93 tetragonal {3,8} 8 (2,6)

s-nets with edge collapse


Derived U-tilings

10 records listed.
Image U-tiling name PGD Subgroup Transitivity (Vert,Edge,Face) Vertex Degree Vertex Symbol P net G net D net
Tiling details UQC1938 *22222a (2,6,4) {8,3} {4.4.3.4.4.3.4.4}{3.4.4} No s‑net Snet sqc10137 Snet sqc14608
Tiling details UQC1939 *22222a (2,6,4) {8,3} {4.4.3.4.4.3.4.4}{3.4.4} Snet sqc3194 Snet sqc10124 Snet sqc4203
Tiling details UQC1940 *22222a (2,6,4) {8,3} {4.4.3.4.4.3.4.4}{3.4.4} Snet sqc10208 Snet sqc10211 Snet sqc4367
Tiling details UQC1941 *22222a (2,6,4) {8,3} {4.4.3.4.4.3.4.4}{3.4.4} Snet sqc9660 Snet sqc10235 Snet sqc4269
Tiling details UQC1942 *22222b (2,6,4) {8,3} {4.4.3.4.4.3.4.4}{3.4.4} Snet sqc559 Snet sqc10257 Snet sqc4331
Tiling details UQC1943 *22222b (2,6,4) {8,3} {4.4.3.4.4.3.4.4}{3.4.4} Snet sqc4239 Snet sqc10411 Snet sqc559
Tiling details UQC1944 *22222a (2,6,4) {8,3} {4.4.3.4.4.3.4.4}{3.4.4} No s‑net Snet sqc10231 Snet sqc14607
Tiling details UQC1945 *22222b (2,6,4) {8,3} {4.4.3.4.4.3.4.4}{3.4.4} No s‑net Snet sqc10264 Snet sqc14543
Tiling details UQC1946 *22222b (2,6,4) {8,3} {4.4.3.4.4.3.4.4}{3.4.4} Snet sqc559 Snet sqc10408 Snet sqc4378
Tiling details UQC1947 *22222b (2,6,4) {8,3} {4.4.3.4.4.3.4.4}{3.4.4} Snet sqc3397 Snet sqc10258 Snet sqc672

Symmetry-lowered hyperbolic tilings