Orbifold symbol | *22222 |
Transitivity (vertex, edge, ring) | (2,6,4) |
Vertex degrees | {8,3} |
2D vertex symbol | {4.4.3.4.4.3.4.4}{3.4.4} |
Delaney-Dress Symbol | <1625.2:11:1 2 3 4 5 7 9 10 11,2 4 6 7 10 11,1 3 5 8 9 10 11:4 4 3 4,8 3> |
Dual net | hqc1762 |
Image | s-net name | Other names | Space group | Space group number | Symmetry class | Vertex degree(s) | Vertices per primitive unit cell | Transitivity (Vertex, Edge) |
---|---|---|---|---|---|---|---|---|
sqc559 | Pmmm | 47 | orthorhombic | {3,8} | 4 | (2,6) | ||
sqc4239 | Fmmm | 69 | orthorhombic | {8,3} | 8 | (2,6) | ||
sqc10208 | P4/mmm | 123 | tetragonal | {3,8} | 16 | (2,6) | ||
sqc10124 | I4122 | 98 | tetragonal | {3,8} | 16 | (2,7) | ||
sqc10137 | I4122 | 98 | tetragonal | {3,8} | 16 | (2,7) | ||
sqc10211 | I4122 | 98 | tetragonal | {3,8} | 16 | (2,7) | ||
sqc10231 | I4122 | 98 | tetragonal | {3,8} | 16 | (2,7) | ||
sqc10235 | I4122 | 98 | tetragonal | {3,8} | 16 | (2,7) | ||
sqc10257 | Fddd | 70 | orthorhombic | {3,8} | 16 | (2,7) | ||
sqc10258 | Fddd | 70 | orthorhombic | {3,8} | 16 | (2,7) | ||
sqc10264 | Fddd | 70 | orthorhombic | {3,8} | 16 | (2,7) | ||
sqc10408 | Fddd | 70 | orthorhombic | {3,8} | 16 | (2,7) | ||
sqc10411 | Fddd | 70 | orthorhombic | {3,8} | 16 | (2,7) | ||
sqc672 | Pmmm | 47 | orthorhombic | {3,8} | 4 | (2,6) | ||
sqc4203 | P4222 | 93 | tetragonal | {8,3} | 8 | (2,6) | ||
sqc4269 | P4222 | 93 | tetragonal | {3,8} | 8 | (2,6) | ||
sqc4331 | Cmma | 67 | orthorhombic | {3,8} | 8 | (2,6) | ||
sqc4367 | P4222 | 93 | tetragonal | {8,3} | 8 | (2,6) | ||
sqc4378 | Cmma | 67 | orthorhombic | {8,3} | 8 | (2,6) | ||
sqc14543 | Pmmm | 47 | orthorhombic | {3,8} | 4 | (2,6) | ||
sqc14607 | P4222 | 93 | tetragonal | {3,8} | 8 | (2,6) | ||
sqc14608 | P4222 | 93 | tetragonal | {3,8} | 8 | (2,6) |
Image | U-tiling name | PGD Subgroup | Transitivity (Vert,Edge,Face) | Vertex Degree | Vertex Symbol | P net | G net | D net |
---|---|---|---|---|---|---|---|---|
UQC1938 | *22222a | (2,6,4) | {8,3} | {4.4.3.4.4.3.4.4}{3.4.4} | No s‑net | sqc10137 | sqc14608 | |
UQC1939 | *22222a | (2,6,4) | {8,3} | {4.4.3.4.4.3.4.4}{3.4.4} | sqc3194 | sqc10124 | sqc4203 | |
UQC1940 | *22222a | (2,6,4) | {8,3} | {4.4.3.4.4.3.4.4}{3.4.4} | sqc10208 | sqc10211 | sqc4367 | |
UQC1941 | *22222a | (2,6,4) | {8,3} | {4.4.3.4.4.3.4.4}{3.4.4} | sqc9660 | sqc10235 | sqc4269 | |
UQC1942 | *22222b | (2,6,4) | {8,3} | {4.4.3.4.4.3.4.4}{3.4.4} | sqc559 | sqc10257 | sqc4331 | |
UQC1943 | *22222b | (2,6,4) | {8,3} | {4.4.3.4.4.3.4.4}{3.4.4} | sqc4239 | sqc10411 | sqc559 | |
UQC1944 | *22222a | (2,6,4) | {8,3} | {4.4.3.4.4.3.4.4}{3.4.4} | No s‑net | sqc10231 | sqc14607 | |
UQC1945 | *22222b | (2,6,4) | {8,3} | {4.4.3.4.4.3.4.4}{3.4.4} | No s‑net | sqc10264 | sqc14543 | |
UQC1946 | *22222b | (2,6,4) | {8,3} | {4.4.3.4.4.3.4.4}{3.4.4} | sqc559 | sqc10408 | sqc4378 | |
UQC1947 | *22222b | (2,6,4) | {8,3} | {4.4.3.4.4.3.4.4}{3.4.4} | sqc3397 | sqc10258 | sqc672 |