U-tiling: UQC1941
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc1625 |
*22222 |
(2,6,4) |
{8,3} |
{4.4.3.4.4.3.4.4}{3.4.4} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
True
|
|
sqc9660
|
|
P4/mmm |
123 |
tetragonal |
{3,7} |
16 |
(2,6) |
G
|
False
|
|
sqc10235
|
|
I4122 |
98 |
tetragonal |
{3,8} |
16 |
(2,7) |
D
|
False
|
|
sqc4269
|
|
P4222 |
93 |
tetragonal |
{3,8} |
8 |
(2,6) |
Topological data
Vertex degrees | {8,3} |
2D vertex symbol | {4.4.3.4.4.3.4.4}{3.4.4} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<61.5:176:23 4 5 28 18 19 31 32 110 34 15 16 39 42 43 88 26 27 40 41 132 37 38 121 67 48 49 72 84 85 75 76 154 89 59 60 94 106 107 97 98 143 70 71 117 118 176 111 81 82 116 119 120 92 93 128 129 165 122 103 104 127 130 131 114 115 125 126 155 136 137 160 150 151 163 164 166 147 148 171 174 175 158 159 172 173 169 170,2 14 6 7 9 11 13 17 18 20 22 24 36 28 29 31 33 35 39 40 42 44 46 80 50 51 53 55 57 102 61 62 64 66 68 113 72 73 75 77 79 83 84 86 88 90 124 94 95 97 99 101 105 106 108 110 112 116 117 119 121 123 127 128 130 132 134 146 138 139 141 143 145 149 150 152 154 156 168 160 161 163 165 167 171 172 174 176,12 3 5 50 8 10 55 14 16 61 19 21 66 34 25 27 72 30 32 77 36 38 94 41 43 99 78 47 49 52 54 100 58 60 63 65 111 69 71 74 76 80 82 138 85 87 143 122 91 93 96 98 102 104 149 107 109 154 113 115 160 118 120 165 124 126 171 129 131 176 144 135 137 140 142 146 148 151 153 166 157 159 162 164 168 170 173 175:4 3 4 4 4 4 3 4 3 4 4 4 3 4 4 3 4 3 4 4 3 4 4 3,3 8 8 3 8 8 3 3 3 8 3 8 8 8 3 3> {(2, 175): 't1^-1', (0, 117): 'tau2', (2, 43): 't1', (0, 154): 'tau2*t3', (0, 63): 't2*tau3^-1', (0, 30): 't1^-1', (0, 151): 't3*tau2', (0, 163): 't1*tau3*t2^-1', (0, 174): 'tau2^-1*t3^-1', (2, 55): 't2', (0, 39): 't1', (0, 62): 't2', (0, 115): 'tau2*t3', (0, 159): 'tau2*t3', (1, 112): 'tau2', (0, 126): 'tau3^-1*t2', (0, 171): 't1^-1*tau3^-1*t2*tau1*t3^-1*tau2^-1', (0, 164): 't1', (0, 61): 't2', (1, 35): 't1', (2, 121): 'tau3^-1', (0, 40): 't1', (0, 149): 'tau1', (0, 116): 'tau2', (0, 128): 'tau3^-1', (0, 172): 't1^-1*tau3^-1*t2*tau1*t3^-1*tau2^-1', (2, 126): 't1', (0, 110): 'tau2*t3', (0, 51): 't3', (1, 57): 't2', (1, 123): 'tau3^-1', (1, 46): 't3', (0, 150): 'tau1', (1, 134): 'tau1^-1', (0, 121): 'tau3^-1*t2', (0, 162): 't1*tau3*t2^-1', (0, 38): 't1', (2, 110): 'tau2', (2, 77): 't3^-1', (0, 52): 't3*tau2', (0, 97): 'tau3*t2^-1', (0, 170): 't1^-1*tau3^-1*t2', (2, 165): 't1^-1*tau3^-1*t2*tau1*t3^-1*tau2^-1', (1, 156): 'tau2*t3*tau1^-1*t2^-1*tau3*t1', (2, 132): 'tau1^-1', (0, 53): 't3*tau2', (2, 33): 't1', (0, 31): 't1^-1', (2, 38): 't1', (0, 131): 't1', (0, 50): 't3', (0, 127): 'tau3^-1', (0, 33): 't1', (0, 165): 't1^-1*tau3^-1*t2', }